Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 313
Filter
1.
Article in English | MEDLINE | ID: mdl-38967296

ABSTRACT

OBJECTIVE: The objective of this study was to identify the transcriptional landscape of insulin resistance (IR) in subcutaneous adipose tissue (SAT) in humans across the spectrum of obesity. METHODS: We used SAT RNA sequencing in 220 individuals with metabolic phenotyping. RESULTS: We identified a 35-gene signature with high predictive accuracy for homeostatic model of IR that was expressed across a variety of non-immune cell populations. We observed primarily "protective" IR associations for adipocyte transcripts and "deleterious" associations for macrophage transcripts, as well as a high concordance between SAT and visceral adipose tissue (VAT). Multiple SAT genes exhibited dynamic expression 5 years after weight loss surgery and with insulin stimulation. Using available expression quantitative trait loci in SAT and/or VAT, we demonstrated similar genetic effect sizes of SAT and VAT on type 2 diabetes and BMI. CONCLUSIONS: SAT is conventionally viewed as a metabolic buffer for lipid deposition during positive energy balance, whereas VAT is viewed as a dominant contributor to and prime mediator of IR and cardiometabolic disease risk. Our results implicate a dynamic transcriptional architecture of IR that resides in both immune and non-immune populations in SAT and is shared with VAT, nuancing the current VAT-centric concept of IR in humans.

2.
Physiol Rep ; 12(13): e16127, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38960895

ABSTRACT

BACKGROUND AND AIMS: High tissue sodium accumulation and intermuscular adipose tissue (IMAT) are associated with aging, type 2 diabetes, and chronic kidney disease. In this study, we aim to investigate whether high lower-extremity tissue sodium accumulation relates to IMAT quantity and whether systemic inflammatory mediators and adipocytokines contribute to such association. METHODS: Tissue sodium content and IMAT accumulation (percentage of IMAT area to muscle area) were measured in 83 healthy individuals using sodium imaging (23Na-MRI) and proton (1H-MRI) imaging of the calf. Insulin sensitivity was assessed by glucose disposal rate (GDR) measured with the hyperinsulinemic-euglycemic clamp. RESULTS: Median (interquartile range) muscle and skin sodium contents were 16.6 (14.9, 19.0) and 12.6 (10.9, 16.7) mmol/L, respectively. Median IMAT was 3.69 (2.80, 5.37) %. In models adjusted for age, sex, BMI, GDR, adiponectin, and high-sensitivity C-reactive protein, increasing tissue sodium content was significantly associated with higher IMAT quantity (p = 0.018 and 0.032 for muscle and skin tissue sodium, respectively). In subgroup analysis stratified by sex, skin sodium was significantly associated with IMAT only among men. In interaction analysis, the association between skin sodium and IMAT was greater with increasing levels of high-sensitivity C-reactive protein and interleukin-6 (p for interaction = 0.022 and 0.006, respectively). CONCLUSIONS: Leg muscle and skin sodium are associated with IMAT quantity among healthy individuals. The relationship between skin sodium and IMAT may be mediated by systemic inflammation.


Subject(s)
Adipose Tissue , Muscle, Skeletal , Sodium , Humans , Male , Female , Adipose Tissue/metabolism , Adipose Tissue/diagnostic imaging , Adult , Sodium/metabolism , Muscle, Skeletal/metabolism , Middle Aged , Skin/metabolism , Insulin Resistance , Magnetic Resonance Imaging/methods
4.
Article in English | MEDLINE | ID: mdl-38728094

ABSTRACT

BACKGROUND: Cognitive dysfunction is a well-known complication of chronic kidney disease, but it is less known whether cognitive decline occurs in survivors after acute kidney injury (AKI). We hypothesized that an episode of AKI is associated with poorer cognitive function, mediated, at least in part, by persistent systemic inflammation. METHODS: ASSESS-AKI enrolled patients surviving three months after hospitalization with and without AKI matched based on demographics, comorbidities, and baseline kidney function. A subset underwent cognitive testing using the modified mini-mental status examination (3MS) at 3, 12, and 36 months. We examined the association of AKI with 3MS scores using mixed linear models and assessed the proportion of risk mediated by systemic inflammatory biomarkers. RESULTS: Among 1538 participants in ASSESS-AKI, 1420 (92%) completed the 3MS assessment at 3 months and had a corresponding matched participant. Participants with AKI had lower 3MS scores at three years (difference -1.1 (95% CI: -2.0, -0.3) P=0.009) compared to participants without AKI. A higher proportion of AKI participants had a clinically meaningful (≥ 5 point) reduction in 3MS scores at three years compared to participants without AKI (14% vs. 10%, P=0.04). In mediation analyses, plasma soluble tumor necrosis factor receptor-1 (sTNFR-1) at three months after AKI mediated 35% (P=0.02) of the AKI related risk for 3MS scores at three years. CONCLUSIONS: AKI was associated with lower 3MS scores and sTNFR-1 concentrations appeared to mediate a significant proportion of the risk of long-term cognitive impairment. Further work is needed to determine if AKI is causal or a marker for cognitive impairment.

6.
Kidney360 ; 5(2): 310-319, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38297445

ABSTRACT

Sarcopenia, defined as age-related decline in skeletal muscle mass and functional capacity, is a hallmark nutritional abnormality observed in patients with moderate-to-advanced CKD. Uremic state and associated medical conditions also predispose older patients with CKD to protein-energy wasting, a nutritional abnormality that could include sarcopenia. Prevention of protein and energy depletion and replenishing the already low nutritional reserves elderly patients with CKD should focus on conventional and innovative strategies. This review aims to provide an overview of the mainstay of nutritional therapy in this patient population, such as intake of adequate amounts of protein and energy along with preserving fluid, electrolyte, and mineral balance, and to discuss more innovative interventions to aid these approaches.


Subject(s)
Nutrition Therapy , Renal Insufficiency, Chronic , Sarcopenia , Humans , Aged , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy , Sarcopenia/therapy , Sarcopenia/complications , Nutritional Support , Cachexia/complications , Cachexia/therapy , Proteins
7.
Clin Kidney J ; 17(1): sfad210, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38186873

ABSTRACT

Maintenance hemodialysis patients suffer from multiple comorbidities and treatment-related complications. A personalized approach to hemodialysis prescription could reduce some of these burdens by preventing complications such as excessive changes in blood pressure, arrhythmias, post-dialysis fatigue and decreased quality of life. A patient-centered approach to dialysate electrolyte concentrations represents one such opportunity. In addition to modifications in dialysate electrolyte concentrations, consideration of individual factors such as patients' serum concentrations, medication profiles, nutritional status and comorbidities is critical to tailoring hemodialysis prescriptions to optimize patient outcomes. The development of personalized dialysis treatment depends on the collection of comprehensive patient data, advances in technology, resource allocation and patient involvement in decision-making. This review discusses how the treatment of maintenance hemodialysis patients could benefit from individualized changes in certain dialysis fluid components.

8.
J Cachexia Sarcopenia Muscle ; 15(1): 401-411, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38178557

ABSTRACT

BACKGROUND: Chronic inflammation and insulin resistance are highly prevalent in patients on maintenance haemodialysis (MHD) and are strongly associated with protein energy wasting. We conducted a pilot, randomized, placebo-controlled trial of recombinant human interleukin-1 receptor antagonist (IL-1ra) and pioglitazone to explore the safety, feasibility and efficacy for insulin-mediated protein metabolism in patients undergoing MHD. METHODS: Twenty-four patients were randomized to receive IL-1ra, pioglitazone or placebo for 12 weeks. Changes in serum inflammatory markers and insulin-mediated protein synthesis, breakdown and net balance in the whole-body and skeletal muscle compartments were assessed using hyperinsulinaemic-hyperaminoacidemic clamp technique at baseline and Week 12. RESULTS: Among 24 patients, median (interquartile range) age was 51 (40, 61), 79% were African American and 21% had diabetes mellitus. All patients initiated on intervention completed the study, and no serious adverse events were observed. There was a statistically significant decrease in serum high-sensitivity C-reactive protein in the pioglitazone group compared with placebo, but not in the IL-1ra group. No significant differences in the changes of whole-body or skeletal muscle protein synthesis, breakdown and net balance were found between the groups. CONCLUSIONS: In this pilot study, there were no statistically significant effects of 12 weeks of IL-1ra or pioglitazone on protein metabolism in patients on MHD. CLINICALTRIALS: gov registration: NCT02278562.


Subject(s)
Interleukin 1 Receptor Antagonist Protein , Renal Dialysis , Humans , Pioglitazone/therapeutic use , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Pilot Projects , Insulin , Biomarkers
9.
Hypertension ; 81(3): 516-529, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37675576

ABSTRACT

BACKGROUND: The mechanisms by which salt increases blood pressure in people with salt sensitivity remain unclear. Our previous studies found that high sodium enters antigen-presenting cells (APCs) via the epithelial sodium channel and leads to the production of isolevuglandins and hypertension. In the current mechanistic clinical study, we hypothesized that epithelial sodium channel-dependent isolevuglandin-adduct formation in APCs is regulated by epoxyeicosatrienoic acids (EETs) and leads to salt-sensitive hypertension in humans. METHODS: Salt sensitivity was assessed in 19 hypertensive subjects using an inpatient salt loading and depletion protocol. Isolevuglandin-adduct accumulation in APCs was analyzed using flow cytometry. Gene expression in APCs was analyzed using cellular indexing of transcriptomes and epitopes by sequencing analysis of blood mononuclear cells. Plasma and urine EETs were measured using liquid chromatography-mass spectrometry. RESULTS: Baseline isolevuglandin+ APCs correlated with higher salt-sensitivity index. Isolevuglandin+ APCs significantly decreased from salt loading to depletion with an increasing salt-sensitivity index. We observed that human APCs express the epithelial sodium channel δ subunit, SGK1 (salt-sensing kinase serum/glucocorticoid kinase 1), and cytochrome P450 2S1. We found a direct correlation between baseline urinary 14,15 EET and salt-sensitivity index, whereas changes in urinary 14,15 EET negatively correlated with isolevuglandin+ monocytes from salt loading to depletion. Coincubation with 14,15 EET inhibited high-salt-induced increase in isolevuglandin+ APC. CONCLUSIONS: Isolevuglandin formation in APCs responds to acute changes in salt intake in salt-sensitive but not salt-resistant people with hypertension, and this may be regulated by renal 14,15 EET. Baseline levels of isolevuglandin+ APCs or urinary 14,15 EET may provide diagnostic tools for salt sensitivity without a protocol of salt loading.


Subject(s)
Hypertension , Lipids , Sodium Chloride, Dietary , Humans , Sodium Chloride, Dietary/metabolism , Epithelial Sodium Channels/metabolism , Sodium Chloride/metabolism , Eicosanoids , Blood Pressure/physiology
10.
Am J Kidney Dis ; 83(3): 370-385, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37879527

ABSTRACT

All vitamins play essential roles in various aspects of body function and systems. Patients with chronic kidney disease (CKD), including those receiving dialysis, may be at increased risk of developing vitamin deficiencies due to anorexia, poor dietary intake, protein energy wasting, restricted diet, dialysis loss, or inadequate sun exposure for vitamin D. However, clinical manifestations of most vitamin deficiencies are usually subtle or undetected in this population. Testing for circulating levels is not undertaken for most vitamins except folate, B12, and 25-hydroxyvitamin D because assays may not be available or may be costly to perform and do not always correlate with body stores. The last systematic review through 2016 was performed for the Kidney Disease Outcome Quality Initiative (KDOQI) 2020 Nutrition Guideline update, so this article summarizes the more recent evidence. We review the use of vitamins supplementation in the CKD population. To date there have been no randomized trials to support the benefits of any vitamin supplementation for kidney, cardiovascular, or patient-centered outcomes. The decision to supplement water-soluble vitamins should be individualized, taking account the patient's dietary intake, nutritional status, risk of vitamins deficiency/insufficiency, CKD stage, comorbid status, and dialysis loss. Nutritional vitamin D deficiency should be corrected, but the supplementation dose and formulation need to be personalized, taking into consideration the degree of 25-hydroxyvitamin D deficiency, parathyroid hormone levels, CKD stage, and local formulation. Routine supplementation of vitamins A and E is not supported due to potential toxicity. Although more trial data are required to elucidate the roles of vitamin supplementation, all patients with CKD should undergo periodic assessment of dietary intake and aim to receive various vitamins through natural food sources and a healthy eating pattern that includes vitamin-dense foods.


Subject(s)
Avitaminosis , Renal Insufficiency, Chronic , Vitamin D Deficiency , Humans , Vitamins/therapeutic use , Vitamin D , Dietary Supplements , Renal Insufficiency, Chronic/complications , Vitamin D Deficiency/epidemiology , Vitamin D Deficiency/etiology , Vitamin A , Avitaminosis/epidemiology , Avitaminosis/complications , Vitamin K
11.
JAMA Netw Open ; 6(11): e2343290, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37962888

ABSTRACT

Importance: Clinical trial data have called into question the efficacy of thiazide diuretics for the prevention of kidney stones. Objective: To identify whether there is an association between genetic proxies of thiazide diuretics and the risk of kidney stones. Design, Setting, and Participants: This genetic association study undertook a mendelian randomization analysis of derived exposures and outcomes from genome-wide association study summary statistics. Genetic proxies of thiazide diuretics were derived from the International Consortium for Blood Pressure. Kidney stone cases and controls were derived from the Million Veteran Program, UK Biobank, and the FinnGen study. These cross-sectional designs do not report a duration of follow-up. Data analysis was performed in May 2023. Exposure: Genetic proxies of thiazide diuretics were genetic variants in the thiazide-sensitive sodium chloride cotransporter gene associated with systolic blood pressure. Genetic proxies of ß-blockers and systolic blood pressure served as negative controls. Main Outcomes and Measures: The main outcome was the odds of kidney stones. The secondary outcomes were serum laboratory values relevant to the treatment of kidney stones. Results: The main analysis included up to 1 079 657 individuals, including 50 832 kidney stone cases and 1 028 825 controls. In a meta-analysis of all cohorts, genetic proxies of thiazide diuretics were associated with a lower odds of kidney stones (OR, 0.85; 95% CI, 0.81-0.89; P < .001). Genetic proxies of ß-blockers (OR, 1.02; 95% CI, 0.96-1.07; P = .52) and systolic blood pressure (OR, 1.00; 95% CI, 1.00-1.01; P = .49) were not associated with kidney stones. Genetic proxies of thiazide diuretics were associated with higher serum calcium (ß [SE], 0.051 [0.0092]; P < .001) and total cholesterol (ß [SE], 0.065 [0.015]; P < .001), but lower serum potassium (ß [SE], -0.073 [0.022]; P < .001). Conclusions and Relevance: In this genetic association study, genetic proxies of thiazide diuretics were associated with reduced kidney stone risk. This finding reflects a drug effect over the course of a lifetime, unconstrained by the limited follow-up period of clinical trials.


Subject(s)
Kidney Calculi , Sodium Chloride Symporter Inhibitors , Humans , Sodium Chloride Symporter Inhibitors/therapeutic use , Mendelian Randomization Analysis , Cross-Sectional Studies , Genome-Wide Association Study , Kidney Calculi/genetics , Kidney Calculi/prevention & control
13.
Kidney Int ; 104(3): 425-427, 2023 09.
Article in English | MEDLINE | ID: mdl-37599016

ABSTRACT

The management of volume status in dialysis patients is an important determinant of the rate of decline of residual kidney function. The implementation of clinical protocols to guide volume management in the in-center hemodialysis unit resulted in comparable rates of development of anuria and decline in residual kidney function when compared with bioimpedance spectroscopy-guided volume management. Clinical judgment and experience are important drivers of patient outcomes. The importance and applicability of bioimpedance spectroscopy in other clinical settings, such as units without clear volume management protocols or in home dialysis units, remain to be seen.


Subject(s)
Anuria , Renal Dialysis , Humans , Renal Dialysis/adverse effects , Hemodialysis, Home
14.
Kidney Int ; 104(6): 1194-1205, 2023 12.
Article in English | MEDLINE | ID: mdl-37652206

ABSTRACT

Biomarkers of tubular function such as epidermal growth factor (EGF) may improve prognostication of participants at highest risk for chronic kidney disease (CKD) after hospitalization. To examine this, we measured urinary EGF (uEGF) from samples collected in the Assessment, Serial Evaluation, and Subsequent Sequelae of Acute Kidney Injury (ASSESS-AKI) Study, a multi-center, prospective, observational cohort of hospitalized participants with and without AKI. Cox proportional hazards regression was used to investigate the association of uEGF/Cr at hospitalization, three months post-discharge, and the change between these time points with major adverse kidney events (MAKE): CKD incidence, progression, or development of kidney failure. Clinical findings were paired with mechanistic studies comparing relative Egf expression in mouse models of kidney atrophy or repair after ischemia-reperfusion injury. MAKE was observed in 20% of 1,509 participants over 4.3 years of follow-up. Each 2-fold higher level of uEGF/Cr at three months was associated with decreased risk of MAKE (adjusted hazards ratio 0.46, 95% confidence interval: 0.39-0.55). Participants with the highest increase in uEGF/Cr from hospitalization to three-month follow-up had a lower risk of MAKE (adjusted hazards ratio 0.52; 95% confidence interval: 0.36-0.74) compared to those with the least change in uEGF/Cr. A model using uEGF/Cr at three months combined with clinical variables yielded moderate discrimination for MAKE (area under the curve 0.73; 95% confidence interval: 0.69-0.77) and strong discrimination for kidney failure at four years (area under the curve 0.96; 95% confidence interval: 0.92-1.00). Accelerated restoration of Egf expression in mice was seen in the model of adaptive repair after injury, compared to a model of progressive atrophy. Thus, urinary EGF/Cr may be a biomarker of distal tubular health, with higher concentrations and increased uEGF/Cr post-discharge independently associated with reduced risk of MAKE in hospitalized patients.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Humans , Animals , Mice , Epidermal Growth Factor , Prospective Studies , Aftercare , Glomerular Filtration Rate , Patient Discharge , Kidney , Renal Insufficiency, Chronic/diagnosis , Biomarkers , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Atrophy
16.
J Am Soc Nephrol ; 34(9): 1547-1559, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37261792

ABSTRACT

SIGNIFICANCE STATEMENT: Rapid progression of CKD is associated with poor clinical outcomes. Most previous studies looking for genetic factors associated with low eGFR have used cross-sectional data. The authors conducted a meta-analysis of genome-wide association studies of eGFR decline among 116,870 participants with CKD, focusing on longitudinal data. They identified three loci (two of them novel) associated with longitudinal eGFR decline. In addition to the known UMOD/PDILT locus, variants within BICC1 were associated with significant differences in longitudinal eGFR slope. Variants within HEATR4 also were associated with differences in eGFR decline, but only among Black/African American individuals without diabetes. These findings help characterize molecular mechanisms of eGFR decline in CKD and may inform new therapeutic approaches for progressive kidney disease. BACKGROUND: Rapid progression of CKD is associated with poor clinical outcomes. Despite extensive study of the genetics of cross-sectional eGFR, only a few loci associated with eGFR decline over time have been identified. METHODS: We performed a meta-analysis of genome-wide association studies of eGFR decline among 116,870 participants with CKD-defined by two outpatient eGFR measurements of <60 ml/min per 1.73 m 2 , obtained 90-365 days apart-from the Million Veteran Program and Vanderbilt University Medical Center's DNA biobank. The primary outcome was the annualized relative slope in outpatient eGFR. Analyses were stratified by ethnicity and diabetes status and meta-analyzed thereafter. RESULTS: In cross-ancestry meta-analysis, the strongest association was rs77924615, near UMOD / PDILT ; each copy of the G allele was associated with a 0.30%/yr faster eGFR decline ( P = 4.9×10 -27 ). We also observed an association within BICC1 (rs11592748), where every additional minor allele was associated with a 0.13%/yr slower eGFR decline ( P = 5.6×10 -9 ). Among participants without diabetes, the strongest association was the UMOD/PDILT variant rs36060036, associated with a 0.27%/yr faster eGFR decline per copy of the C allele ( P = 1.9×10 -17 ). Among Black participants, a significantly faster eGFR decline was associated with variant rs16996674 near APOL1 (R 2 =0.29 with the G1 high-risk genotype); among Black participants with diabetes, lead variant rs11624911 near HEATR4 also was associated with a significantly faster eGFR decline. We also nominally replicated loci with known associations with eGFR decline, near PRKAG2, FGF5, and C15ORF54. CONCLUSIONS: Three loci were significantly associated with longitudinal eGFR change at genome-wide significance. These findings help characterize molecular mechanisms of eGFR decline and may contribute to the development of new therapeutic approaches for progressive CKD.


Subject(s)
Genome-Wide Association Study , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/therapy , Cross-Sectional Studies , Kidney , Genotype , Glomerular Filtration Rate/genetics , Disease Progression , Apolipoprotein L1/genetics , Protein Disulfide-Isomerases/genetics
17.
BMC Nephrol ; 24(1): 134, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37170244

ABSTRACT

INTRODUCTION: Intradialytic hypotension (IDH) is a common clinical complication and is associated with increased morbidity and mortality in patients undergoing maintenance hemodialysis (MHD). The pathogenesis of IDH has been attributed to the rapid reduction of plasma volume during hemodialysis and the inadequate compensatory mechanisms in response to hypovolemia, such as the lack of vasoconstriction. This may be due to the increased production of vasodilators, such as bradykinin. In this study we test the hypothesis that bradykinin B2 receptor blockade prevents intradialytic hypotension. METHODS: We performed a post-hoc analysis of a double-blind, placebo-controlled, randomized, 2 × 2 crossover clinical trial comparing the continuous infusion of icatibant, a bradykinin B2 receptor blocker, and placebo during hemodialysis. Icatibant or placebo was infused for 30 min before and during hemodialysis in 11 patients on MHD. RESULTS: Seven of the patients had IDH, defined as a reduction of systolic blood pressure equal to or greater than 20 mmHg during hemodialysis. Stratified analysis, based on the presence of IDH, revealed that icatibant prevented the decrease in blood pressure compared to placebo in patients with IDH [blood pressure at average nadir (2.5 h after hemodialysis): Placebo,114.3 ± 8.9 vs. icatibant, 125.6 ± 9.1 mmHg, mean ± S.E.M]. Icatibant did not affect blood pressure in the group of patients without IDH. CONCLUSION: Bradykinin B2 receptor blocker may prevent the occurrence of IDH. Further studies should evaluate the hemodynamic effects of icatibant during hemodialysis and the symptomatology associated with IDH.


Subject(s)
Hypotension , Receptors, Bradykinin , Humans , Receptors, Bradykinin/therapeutic use , Bradykinin/pharmacology , Bradykinin/therapeutic use , Hypotension/etiology , Hypotension/prevention & control , Renal Dialysis/adverse effects , Blood Pressure
18.
Am J Kidney Dis ; 82(3): 311-321.e1, 2023 09.
Article in English | MEDLINE | ID: mdl-37178093

ABSTRACT

RATIONALE & OBJECTIVE: Acute kidney injury (AKI) is a heterogeneous clinical syndrome with varying causes, pathophysiology, and outcomes. We incorporated plasma and urine biomarker measurements to identify AKI subgroups (subphenotypes) more tightly linked to underlying pathophysiology and long-term clinical outcomes. STUDY DESIGN: Multicenter cohort study. SETTING & PARTICIPANTS: 769 hospitalized adults with AKI matched with 769 without AKI, enrolled from December 2009 to February 2015 in the ASSESS-AKI Study. PREDICTORS: 29 clinical, plasma, and urinary biomarker parameters used to identify AKI subphenotypes. OUTCOME: Composite of major adverse kidney events (MAKE) with a median follow-up period of 4.7 years. ANALYTICAL APPROACH: Latent class analysis (LCA) and k-means clustering were applied to 29 clinical, plasma, and urinary biomarker parameters. Associations between AKI subphenotypes and MAKE were analyzed using Kaplan-Meier curves and Cox proportional hazard models. RESULTS: Among 769 AKI patients both LCA and k-means identified 2 distinct AKI subphenotypes (classes 1 and 2). The long-term risk for MAKE was higher with class 2 (adjusted HR, 1.41 [95% CI, 1.08-1.84]; P=0.01) compared with class 1, adjusting for demographics, hospital level factors, and KDIGO stage of AKI. The higher risk of MAKE among class 2 was explained by a higher risk of long-term chronic kidney disease progression and dialysis. The top variables that were different between classes 1 and 2 included plasma and urinary biomarkers of inflammation and epithelial cell injury; serum creatinine ranked 20th out of the 29 variables for differentiating classes. LIMITATIONS: A replication cohort with simultaneously collected blood and urine sampling in hospitalized adults with AKI and long-term outcomes was unavailable. CONCLUSIONS: We identify 2 molecularly distinct AKI subphenotypes with differing risk of long-term outcomes, independent of the current criteria to risk stratify AKI. Future identification of AKI subphenotypes may facilitate linking therapies to underlying pathophysiology to prevent long-term sequalae after AKI. PLAIN-LANGUAGE SUMMARY: Acute kidney injury (AKI) occurs commonly in hospitalized patients and is associated with high morbidity and mortality. The AKI definition lumps many different types of AKI together, but subgroups of AKI may be more tightly linked to the underlying biology and clinical outcomes. We used 29 different clinical, blood, and urinary biomarkers and applied 2 different statistical algorithms to identify AKI subtypes and their association with long-term outcomes. Both clustering algorithms identified 2 AKI subtypes with different risk of chronic kidney disease, independent of the serum creatinine concentrations (the current gold standard to determine severity of AKI). Identification of AKI subtypes may facilitate linking therapies to underlying biology to prevent long-term consequences after AKI.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Adult , Humans , Cohort Studies , Creatinine , Biomarkers , Acute Kidney Injury/etiology , Renal Insufficiency, Chronic/complications
19.
Nutr Metab Cardiovasc Dis ; 33(7): 1398-1406, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37156670

ABSTRACT

BACKGROUND AND AIMS: High sodium intake is associated with obesity and insulin resistance, and high extracellular sodium content may induce systemic inflammation, leading to cardiovascular disease. In this study, we aim to investigate whether high tissue sodium accumulation relates with obesity-related insulin resistance and whether the pro-inflammatory effects of excess tissue sodium accumulation may contribute to such association. METHODS AND RESULTS: In a cross-sectional study of 30 obese and 53 non-obese subjects, we measured insulin sensitivity determined as glucose disposal rate (GDR) using hyperinsulinemic euglycemic clamp, and tissue sodium content using 23Na magnetic resonance imaging. Median age was 48 years, 68% were female and 41% were African American. Median (interquartile range) BMI was 33 (31.5, 36.3) and 25 (23.5, 27.2) kg/m2 in the obese and non-obese individuals, respectively. In obese individuals, insulin sensitivity negatively correlated with muscle (r = -0.45, p = 0.01) and skin sodium (r = -0.46, p = 0.01). In interaction analysis among obese individuals, tissue sodium had a greater effect on insulin sensitivity at higher levels of high-sensitivity C-reactive protein (p-interaction = 0.03 and 0.01 for muscle and skin Na+, respectively) and interleukin-6 (p-interaction = 0.024 and 0.003 for muscle and skin Na+, respectively). In interaction analysis of the entire cohort, the association between muscle sodium and insulin sensitivity was stronger with increasing levels of serum leptin (p-interaction = 0.01). CONCLUSIONS: Higher muscle and skin sodium are associated with insulin resistance in obese patients. Whether high tissue sodium accumulation has a mechanistic role in the development of obesity-related insulin resistance through systemic inflammation and leptin dysregulation remains to be examined in future studies. CLINICALTRIALS: gov registration: NCT02236520.


Subject(s)
Insulin Resistance , Humans , Female , Middle Aged , Male , Leptin , Blood Glucose/metabolism , Insulin , Cross-Sectional Studies , Obesity , Inflammation/diagnosis , Sodium
20.
JCI Insight ; 8(9)2023 05 08.
Article in English | MEDLINE | ID: mdl-36951957

ABSTRACT

BACKGROUNDLongitudinal investigations of murine acute kidney injury (AKI) suggest that injury and inflammation may persist long after the initial insult. However, the evolution of these processes and their prognostic values are unknown in patients with AKI.METHODSIn a prospective cohort of 656 participants hospitalized with AKI, we measured 7 urine and 2 plasma biomarkers of kidney injury, inflammation, and tubular health at multiple time points from the diagnosis to 12 months after AKI. We used linear mixed-effect models to estimate biomarker changes over time, and we used Cox proportional hazard regressions to determine their associations with a composite outcome of chronic kidney disease (CKD) incidence and progression. We compared the gene expression kinetics of biomarkers in murine models of repair and atrophy after ischemic reperfusion injury (IRI).RESULTSAfter 4.3 years, 106 and 52 participants developed incident CKD and CKD progression, respectively. Each SD increase in the change of urine KIM-1, MCP-1, and plasma TNFR1 from baseline to 12 months was associated with 2- to 3-fold increased risk for CKD, while the increase in urine uromodulin was associated with 40% reduced risk for CKD. The trajectories of these biological processes were associated with progression to kidney atrophy in mice after IRI.CONCLUSIONSustained tissue injury and inflammation, and slower restoration of tubular health, are associated with higher risk of kidney disease progression. Further investigation into these ongoing biological processes may help researchers understand and prevent the AKI-to-CKD transition.FUNDINGNIH and NIDDK (grants U01DK082223, U01DK082185, U01DK082192, U01DK082183, R01DK098233, R01DK101507, R01DK114014, K23DK100468, R03DK111881, K01DK120783, and R01DK093771).


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Mice , Animals , Prospective Studies , Kidney/metabolism , Acute Kidney Injury/metabolism , Renal Insufficiency, Chronic/metabolism , Biomarkers/metabolism , Inflammation/complications , Disease Progression
SELECTION OF CITATIONS
SEARCH DETAIL
...