Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 191(6): 3287-96, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23926326

ABSTRACT

Ig-binding proteins are employed by a variety of organisms to evade the immune system. To our knowledge, we now report for the first time that meningococcal strains from several capsular groups exhibit Ig-binding activity that is dependent on human serum factors. A protein mediating Ig binding was identified as T and B cell-stimulating protein B (TspB) by immunoprecipitation and by mass spectroscopic analysis of tryptic peptides. Recombinant TspB and derivatives verified Ig binding, with a preference for human IgG2 Fc, and localized the IgG-binding region to a highly conserved subdomain of TspB. Antiserum produced in mice against the conserved subdomain detected the presence of TspB on the cell surface by flow cytometry when bacteria were grown in the presence of human serum. By fluorescence microscopy, we observed formation of an extracellular matrix having characteristics of a biofilm containing TspB, human IgG, DNA, and large aggregates of bacteria. TspB is encoded by gene ORF6 in prophage DNA, which others have shown is associated with invasive meningococcal strains. Knocking out ORF6 genes eliminated IgG binding and formation of large bacterial aggregates in biofilm. Reintroduction of a wild-type ORF6 gene by phage transduction restored the phenotype. The results show that TspB mediated IgG binding and aggregate/biofilm formation triggered by factors in human serum. As has been observed for other Ig-binding proteins, the activities mediated by TspB may provide protection against immune responses, which is in accordance with the association of prophage DNA carrying ORF6 with invasive meningococcal strains.


Subject(s)
Bacterial Proteins/metabolism , Biofilms , Neisseria meningitidis/physiology , Neisseria meningitidis/pathogenicity , Animals , Bacterial Adhesion/genetics , Bacterial Proteins/genetics , Bacteriophages , Base Sequence , Carrier Proteins/immunology , Carrier Proteins/metabolism , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Immunoglobulin G/metabolism , Immunoprecipitation , Mass Spectrometry , Meningococcal Infections/immunology , Mice , Molecular Sequence Data , Transduction, Genetic
2.
Vaccine ; 28(37): 5967-72, 2010 Aug 23.
Article in English | MEDLINE | ID: mdl-20637761

ABSTRACT

Antibody-mediated complement-dependent bactericidal activity (BCA) against Neisseria meningitidis (Nm) is correlated with protection against invasive disease. Recently, we showed that murine antibodies elicited by neuraminic acid-containing polysialic acid (NeuPSA) antigens conferred protection against Nm group B (NmB) strains in an infant rat model of meningococcal bacteremia [Moe GR, Bhandari TS, Flitter BA. Vaccines containing de-N-acetyl sialic acid elicit antibodies protective against neisseria meningitidis groups B and C. J Immunol 2009;182(10):6610-7]. However, NeuPSA antibodies did not mediate BCA against NmB strains in vitro despite the presence of NmB-reactive IgG and IgM. Using monoclonal antibodies (mAbs) SEAM 2 and 3, which are reactive with two distinctive NeuPSA epitopes, and an NmB anticapsular mAb, we show that growth in human serum affects expression of NeuPSA epitopes by NmB and is necessary for evaluating anti-NeuPSA functional activity.


Subject(s)
Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Blood Bactericidal Activity , Epitopes/immunology , Neisseria meningitidis, Serogroup B/immunology , Sialic Acids/immunology , Animals , Antibodies, Bacterial/isolation & purification , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Complement System Proteins/immunology , Humans , Mice , Rats
3.
Vaccimonitor ; 18(2): 61-65, 2009.
Article in English | MEDLINE | ID: mdl-21822362

ABSTRACT

Recently, we showed that monoclonal antibodies (mAbs) that are reactive with derivatives of polysialic acid containing de-N-acetylated neuraminic acid (Neu) residues are protective against N. meningitidis group B strains (Moe et al. 2005, Infect Immun73: 2123; Flitter et al., in preparation). In addition, we found that fully de-N-acetylated PSA (i.e. poly alpha 2,8 Neu) conjugated to tetanus toxoid (DeNAc) elicits IgM and IgG antibodies of all subclasses in mice that bind to group B strains, activate human complement deposition, are protective in an infant rat model of meningococcal bacteremia and are bactericidal against group C strains (Moe et al, in press). We show here that anti-DeNAc mAbs, DA1 and DA2 (both IgM), are reactive with polysaccharides containing Neu, bind to group B, C, W135 and Y but not X strains grown in chemically defined media (CDM). However, when the group X strain is grown in CDM supplemented with human plasma, DA2 binds. Also both mAbs mediate bactericidal activity against B, C, W135, and X strains with human complement. The results suggests that N. meningitidis express and/or acquire zwitterionic de-N-acetyl sialic acid antigens that can be the target of protective antibodies.

SELECTION OF CITATIONS
SEARCH DETAIL
...