Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 672: 797-804, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38870770

ABSTRACT

HYPOTHESIS: The complexation of microgels with rigid nanoparticles is an effective way to impart novel properties and functions to the resulting hybrid particles for applications such as in optics, catalysis, or for the stabilization of foams/emulsions. The nanoparticles affect the conformation of the polymer network, both in bulk aqueous environments and when the microgels are adsorbed at a fluid interface, in a non-trivial manner by modulating the microgel size, stiffness and apparent contact angle. EXPERIMENTS: Here, we provide a detailed investigation, using light scattering, in-situ atomic force microscopy and nano-indentation experiments, of the interaction between poly(N-isopropylacrylamide) microgels and hydrophobized silica nanoparticles after mixing in aqueous suspension to shed light on the network reorganization upon nanoparticle incorporation. FINDINGS: The addition of nanoparticles decreases the microgels' bulk swelling and thermal response. When adsorbed at an oil-water interface, a higher ratio of nanoparticles influences the microgel's stiffness as well as their hydrophobic/hydrophilic character by increasing their effective contact angle, consequently modulating the monolayer response upon interfacial compression. Overall, these results provide fundamental understanding on the complex conformation of hybrid microgels in different environments and give inspiration to design new materials where the combination of a soft polymer network and nanoparticles might result in additional functionalities.

2.
J Colloid Interface Sci ; 672: 814-823, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38878623

ABSTRACT

HYPOTHESIS: Particle surface chemistry and internal softness are two fundamental parameters in governing the mechanical properties of dense colloidal suspensions, dictating structure and flow, therefore of interest from materials fabrication to processing. EXPERIMENTS: Here, we modulate softness by tuning the crosslinker content of poly(N-isopropylacrylamide) microgels, and we adjust their surface properties by co-polymerization with polyethylene glycol chains, controlling adhesion, friction and fuzziness. We investigate the distinct effects of these parameters on the entire mechanical response from restructuring to complete fluidization of jammed samples at varying packing fractions under large-amplitude oscillatory shear experiments, and we complement rheological data with colloidal-probe atomic force microscopy to unravel variations in the particles' surface properties. FINDINGS: Our results indicate that surface properties play a fundamental role at smaller packings; decreasing adhesion and friction at contact causes the samples to yield and fluidify in a lower deformation range. Instead, increasing softness or fuzziness has a similar effect at ultra-high densities, making suspensions able to better adapt to the applied shear and reach complete fluidization over a larger deformation range. These findings shed new light on the single-particle parameters governing the mechanical response of dense suspensions subjected to deformation, offering synthetic approaches to design materials with tailored mechanical properties.

3.
J Am Chem Soc ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38859572

ABSTRACT

Ought to their bioinert properties and facile synthesis, poly[(oligoethylene glycol)methacrylate]s (POEGMAs) have been raised as attractive alternatives to poly(ethylene glycols) (PEGs) in an array of (bio)material applications, especially when they are applied as polymer brush coatings. However, commercially available OEG-methacrylate (macro)monomers feature a broad distribution of OEG lengths, thus generating structurally polydisperse POEGMAs when polymerized through reversible deactivation radical polymerization. Here, we demonstrate that the interfacial physicochemical properties of POEGMA brushes are significantly affected by their structural dispersity, i.e., the degree of heterogeneity in the length of side OEG segments. POEGMA brushes synthesized from discrete (macro)monomers obtained through chromatographic purification of commercial mixtures show increased hydration and reduced adhesion when compared to their structurally polydisperse analogues. The observed alteration of interfacial properties is directly linked to the presence of monodisperse OEG side chains, which hamper intramolecular and intermolecular hydrophobic interactions while simultaneously promoting the association of water molecules. These phenomena provide structurally homogeneous POEGMA brushes with a more lubricious and protein repellent character with respect to their heterogeneous counterparts. More generally, in contrast to what has been assumed until now, the properties of POEGMA brushes cannot be anticipated while ruling out the effect of dispersity by (macro)monomer feeds. Simultaneously, side chain dispersity of POEGMAs emerges as a critical parameter for determining the interfacial characteristics of brushes.

4.
Small ; : e2400180, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693098

ABSTRACT

Nature uses replication to amplify the information necessary for the intricate structures vital for life. Despite some successes with pure nucleotide structures, constructing synthetic microscale systems capable of replication remains largely out of reach. Here, a functioning strategy is shown for the replication of microscale particle assemblies using DNA-coated colloids. By positioning DNA-functionalized colloids using capillary forces and embedding them into a polymer layer, programmable sequences of patchy particles are created that act as a primer and offer precise binding of complementary particles from suspension. The strings of complementary colloids are cross-linked, released from the primer, and purified via flow cytometric sorting to achieve a purity of up to 81% of the replicated sequences. The replication of strings of up to five colloids and non-linear shapes is demonstrated with particles of different sizes and materials. Furthermore, a pathway for exponential self-replication is outlined, including preliminary data that shows the transfer of patches and binding of a second-generation of assemblies from suspension.

5.
Soft Matter ; 20(13): 2881-2886, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38477048

ABSTRACT

Colloidal particles are considered to be essential building blocks for creating innovative self-assembled and active materials, for which complexity beyond that of compositionally uniform particles is key. However, synthesizing complex, multi-material colloids remains a challenge, often resulting in heterogeneous populations that require post-synthesis purification. Leveraging advances brought forward in the purification of biological samples, here we apply fluorescence-activated cell sorting (FACS) to sort colloidal clusters synthesized through capillary assembly. Our results demonstrate the effectiveness of FACS in sorting clusters based on size, shape, and composition. Notably, we achieve a sorting purity of up to 97% for clusters composed of up to 9 particles, albeit observing a decline in purity with increasing cluster size. Additionally, dimers of different colloids can be purified to over 97%, while linear and triangular trimers can be separated with up to 88% purity. This work underscores the potential of FACS as a promising and little-used tool in colloidal science to support the development of increasingly more intricate particle-based building blocks.


Subject(s)
Colloids , Polymers , Flow Cytometry/methods
6.
Langmuir ; 40(13): 6750-6760, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38497776

ABSTRACT

Colloidal probe microscopy, a technique whereby a microparticle is affixed at the end of an atomic force microscopy (AFM) cantilever, plays a pivotal role in enabling the measurement of friction at the nanoscale and is of high relevance for applications and fundamental studies alike. However, in conventional experiments, the probe particle is immobilized onto the cantilever, thereby restricting its relative motion against a countersurface to pure sliding. Nonetheless, under many conditions of interest, such as during the processing of particle-based materials, particles are free to roll and slide past each other, calling for the development of techniques capable of measuring rolling friction alongside sliding friction. Here, we present a new methodology to measure lateral forces during rolling contacts based on the adaptation of colloidal probe microscopy. Using two-photon polymerization direct laser writing, we microfabricate holders that can capture microparticles, but allow for their free rotation. Once attached to an AFM cantilever, upon lateral scanning, the holders enable both sliding and rolling contacts between the captured particles and the substrate, depending on the interactions, while simultaneously giving access to normal and lateral force signals. Crucially, by producing particles with optically heterogeneous surfaces, we can accurately detect the presence of rotation during scanning. After introducing the workflow for the fabrication and use of the probes, we provide details on their calibration, investigate the effect of the materials used to fabricate them, and report data on rolling friction as a function of the surface roughness of the probe particles. We firmly believe that our methodology opens up new avenues for the characterization of rolling contacts at the nanoscale, aimed, for instance, at engineering particle surface properties and characterizing functional coatings in terms of their rolling friction.

7.
Nanoscale ; 16(5): 2444-2451, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38214073

ABSTRACT

The underlying mechanisms and physics of catalytic Janus microswimmers is highly complex, requiring details of the associated phoretic fields and the physiochemical properties of catalyst, particle, boundaries, and the fuel used. Therefore, developing a minimal (and more general) model capable of capturing the overall dynamics of these autonomous particles is highly desirable. In the presented work, we demonstrate that a coarse-grained dissipative particle-hydrodynamics model is capable of describing the behaviour of various chemical microswimmer systems. Specifically, we show how a competing balance between hydrodynamic interactions experienced by a squirmer in the presence of a substrate, gravity, and mass and shape asymmetries can reproduce a range of dynamics seen in different experimental systems. We hope that our general model will inspire further synthetic work where various modes of swimmer motion can be encoded via shape and mass during fabrication, helping to realise the still outstanding goal of microswimmers capable of complex 3-D behaviour.

8.
Lab Chip ; 23(23): 5018-5028, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37909096

ABSTRACT

In microbiology, accessing single-cell information within large populations is pivotal. Here we introduce bio-sCAPA, a technique for patterning bacterial cells in defined geometric arrangements and monitoring their growth in various nutrient environments. We demonstrate bio-sCAPA with a study of subpopulations of antibiotic-tolerant bacteria, known as persister cells, which can survive exposure to high doses of antibiotics despite lacking any genetic resistance to the drug. Persister cells are associated with chronic and relapsing infections, yet are difficult to study due in part to a lack of scalable, single-cell characterisation methods. As >105 cells can be patterned on each template, and multiple templates can be patterned in parallel, bio-sCAPA allows for very rare population phenotypes to be monitored with single-cell precision across various environmental conditions. Using bio-sCAPA, we analysed the phenotypic characteristics of single Staphylococcus aureus cells tolerant to flucloxacillin and rifampicin killing. We find that antibiotic-tolerant S. aureus cells do not display significant heterogeneity in growth rate and are instead characterised by prolonged lag-time phenotypes alone.


Subject(s)
Anti-Bacterial Agents , Staphylococcal Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcus aureus/genetics , Bacteria , Staphylococcal Infections/drug therapy , Floxacillin
9.
Article in English | MEDLINE | ID: mdl-37910785

ABSTRACT

Recent years have shown the need for trustworthy, unclonable, and durable tokens as proof of authenticity for a large variety of products to combat the economic cost of counterfeits. An excellent solution is physical unclonable functions (PUFs), which are intrinsically random objects that cannot be recreated, even if illegitimate manufacturers have access to the same methods. We propose a robust and simple way to make pixelated PUFs through the deposition of a random mixture of fluorescent colloids in a predetermined lattice using capillarity-assisted particle assembly. As the encoding capacity scales exponentially with the number of deposited particles, we can easily achieve encoding capacities above 10700 for sub millimeter scale samples, where the pixelated nature of the PUFs allows for easy and trustworthy readout. Our method allows for the PUFs to be transferred to, and embedded in, a range of transparent materials to protect them from environmental challenges, leading to improved stability and robustness and allowing their implementation for a large number of different applications.

10.
Soft Matter ; 19(45): 8790-8801, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37946586

ABSTRACT

Efficient exploration of space is a paramount motive for active colloids in practical applications. Yet, introducing activity may lead to surface-bound states, hindering efficient space exploration. Here, we show that the interplay between self-motility and fuel-dependent affinity for surfaces affects how efficiently catalytically-active Janus microswimmers explore both liquid-solid and liquid-fluid interfaces decorated with arrays of similarly-sized obstacles. In a regime of constant velocity vs. fuel concentration, we find that microswimmer-obstacle interactions strongly depend on fuel concentration, leading to a counter-intuitive decrease in space exploration efficiency with increased available fuel for all interfaces. Using experiments and theoretical predictions, we attribute this phenomenon to a largely overlooked change in the surface properties of the microswimmers' catalytic cap upon H2O2 exposure. Our findings have implications in the interpretation of experimental studies of catalytically active colloids, as well as in providing new handles to control their dynamics in complex environments.

11.
Phys Rev Lett ; 131(12): 128202, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37802948

ABSTRACT

Monolayers of colloidal particles at oil-water interfaces readily crystallize owing to electrostatic repulsion, which is often mediated through the oil. However, little attempts exist to control it using oil-soluble electrolytes. We probe the interactions among charged hydrophobic microspheres confined at a water-hexadecane interface and show that repulsion can be continuously tuned over orders of magnitude upon introducing nanomolar amounts of an organic salt into the oil. Our results are compatible with an associative discharging mechanism of surface groups at the particle-oil interface, similar to the charge regulation observed for charged colloids in nonpolar solvents.

12.
Adv Sci (Weinh) ; 10(28): e2303404, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37541434

ABSTRACT

The encapsulation of a rigid core within a soft polymeric shell allows obtaining composite colloidal particles that retain functional properties, e.g., optical or mechanical. At the same time, it favors their adsorption at fluid interfaces with a tunable interaction potential to realize tailored two-dimensional (2D) materials. Although they have already been employed for 2D assembly, the conformation of single particles, which is essential to define the monolayer properties, has been largely inferred via indirect or ex situ techniques. Here, by means of in situ atomic force microscopy experiments, the authors uncover the interfacial morphology of hard-core soft-shell microgels, integrating the data with numerical simulations to elucidate the role of the core properties, of the shell thicknesses, and that of the grafting density. They identify that the hard core can influence the conformation of the polymer shells. In particular, for the case of small shell thickness, low grafting density, or poor core affinity for water, the core protrudes more into the organic phase, and the authors observe a decrease in-plane stretching of the network at the interface. By rationalizing their general wetting behavior, such composite particles can be designed to exhibit specific inter-particle interactions of importance both for the stabilization of interfaces and for the fabrication of 2D materials with tailored functional properties.

13.
Nat Commun ; 14(1): 5309, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37652918

ABSTRACT

Colloidal gels, commonly used as mesoporous intermediates or functional materials, suffer from brittleness, often showing small yield strains on the order of 1% or less for gelled colloidal suspensions. The short-range adhesive forces in most such gels are central forces-combined with the smooth morphology of particles, the resistance to yielding and shear-induced restructuring is limited. In this study, we propose an innovative approach to improve colloidal gels by introducing surface roughness to the particles to change the yield strain, giving rise to non-central interactions. To elucidate the effects of particle roughness on gel properties, we prepared thermoreversible gels made from rough or smooth silica particles using a reliable click-like-chemistry-based surface grafting technique. Rheological and optical characterization revealed that rough particle gels exhibit enhanced toughness and self-healing properties. These remarkable properties can be utilized in various applications, such as xerogel fabrication and high-fidelity extrusion 3D-printing, as we demonstrate in this study.

14.
Bioengineering (Basel) ; 10(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37508797

ABSTRACT

Osteoarthritis scaffold-based grafts fail because of poor integration with the surrounding soft tissue and inadequate tribological properties. To circumvent this, we propose electrospun poly(ε-caprolactone)/zein-based scaffolds owing to their biomimetic capabilities. The scaffold surfaces were characterized using Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, static water contact angles, and profilometry. Scaffold biocompatibility properties were assessed by measuring protein adsorption (Bicinchoninic Acid Assay), cell spreading (stained F-actin), and metabolic activity (PrestoBlue™ Cell Viability Reagent) of primary bovine chondrocytes. The data show that zein surface segregation in the membranes not only completely changed the hydrophobic behavior of the materials, but also increased the cell yield and metabolic activity on the scaffolds. The surface segregation is verified by the infrared peak at 1658 cm-1, along with the presence and increase in N1 content in the survey XPS. This observation could explain the decrease in the water contact angles from 125° to approximately 60° in zein-comprised materials and the decrease in the protein adsorption of both bovine serum albumin and synovial fluid by half. Surface nano roughness in the PCL/zein samples additionally benefited the radial spreading of bovine chondrocytes. This study showed that co-electrospun PCL/zein scaffolds have promising surface and biocompatibility properties for use in articular-tissue-engineering applications.

15.
J Phys Condens Matter ; 35(43)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37463595

ABSTRACT

Artificial microswimmers, i.e. colloidal scale objects capable of self-propulsion, have garnered significant attention due to their central role as models for out of equilibrium systems. Moreover, their potential applications in diverse fields such as biomedicine, environmental remediation, and materials science have long been hypothesized, often in conjunction with their ability to deliver cargoes to overcome mass transport limitations. A very efficient way to load molecular cargoes is to disperse them in a liquid compartment, however, fabricating microswimmers with multiple liquid compartments remains a significant challenge. To address this challenge, we present a modular fabrication platform that combines microfluidic synthesis and sequential capillarity-assisted particle assembly (sCAPA) for microswimmers with various liquid compartments. We demonstrate the synthesis of monodisperse, small polymer-based microcapsules (Ø = 3-6µm) with different liquid cargoes using a flow-focusing microfluidic device. By employing the sCAPA technique, we assemble multiple microcapsules into microswimmers with high precision, resulting in versatile microswimmers with multiple liquid compartments and programmable functionalities. Our work provides a flexible approach for the fabrication of modular microswimmers, which could potentially actively transport cargoes and release them on demand in the future.

16.
J Colloid Interface Sci ; 650(Pt B): 1659-1670, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37494862

ABSTRACT

Liposomes show promise as biolubricants for damaged cartilage, but their small size results in low joint and cartilage retention. We developed a zinc ion-based liposomal drug delivery system for local osteoarthritis therapy, focusing on sustained release and tribological protection from phospholipid lubrication properties. Our strategy involved inducing aggregation of negatively charged liposomes with zinc ions to extend rapamycin (RAPA) release and improve cartilage lubrication. Liposomal aggregation occurred within 10 min and was irreversible, facilitating excess cation removal. The aggregates extended RAPA release beyond free liposomes and displayed irregular morphology influenced by RAPA. At nearly 100 µm, the aggregates were large enough to exceed the previously reported size threshold for increased joint retention. Tribological assessment on silicon surfaces and ex vivo porcine cartilage revealed the system's excellent protective ability against friction at both nano- and macro-scales. Moreover, RAPA was shown to attenuate the fibrotic response in human OA synovial fibroblasts. Our findings suggest the zinc ion-based liposomal drug delivery system has potential to enhance OA therapy through extended release and cartilage tribological protection, while also illustrating the impact of a hydrophobic drug like RAPA on liposome aggregation and morphology.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Liposomes/chemistry , Friction , Sirolimus/pharmacology , Phospholipids , Osteoarthritis/drug therapy , Lubrication
17.
Chem Mater ; 35(9): 3731-3741, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37181676

ABSTRACT

Nanoparticles are key to a range of applications, due to the properties that emerge as a result of their small size. However, their size also presents challenges to their processing and use, especially in relation to their immobilization on solid supports without losing their favorable functionalities. Here, we present a multifunctional polymer-bridge-based approach to attach a range of presynthesized nanoparticles onto microparticle supports. We demonstrate the attachment of mixtures of different types of metal-oxide nanoparticles, as well as metal-oxide nanoparticles modified with standard wet chemistry approaches. We then show that our method can also create composite films of metal and metal-oxide nanoparticles by exploiting different chemistries simultaneously. We finally apply our approach to the synthesis of designer microswimmers with decoupled mechanisms of steering (magnetic) and propulsion (light) via asymmetric nanoparticle binding, aka Toposelective Nanoparticle Attachment. We envision that this ability to freely mix available nanoparticles to produce composite films will help bridge the fields of catalysis, nanochemistry, and active matter toward new materials and applications.

18.
Phys Rev E ; 107(4): L042602, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37198802

ABSTRACT

Anisotropic colloidal particles exhibit complex dynamics which play a crucial role in their functionality, transport, and phase behavior. In this Letter, we investigate the two-dimensional diffusion of smoothly curved colloidal rods-also known as colloidal bananas-as a function of their opening angle α. We measure the translational and rotational diffusion coefficients of the particles with opening angles ranging from 0^{∘} (straight rods) to nearly 360^{∘}(closed rings). In particular, we find that the anisotropic diffusion of the particles varies nonmonotonically with their opening angle and that the axis of fastest diffusion switches from the long to the short axis of the particles when α>180^{∘}. We also find that the rotational diffusion coefficient of nearly closed rings is approximately an order of magnitude higher than that of straight rods of the same length. Finally, we show that the experimental results are consistent with slender body theory, indicating that the dynamical behavior of the particles arises primarily from their local drag anisotropy. These results highlight the impact of curvature on the Brownian motion of elongated colloidal particles, which must be taken into account when seeking to understand the behavior of curved colloidal particles.

19.
J Colloid Interface Sci ; 645: 115-121, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37146375

ABSTRACT

HYPOTHESIS: Colloidal particles in nematic liquid crystals (LCs) are of high interest for self-assembly of soft matter systems. When two free particles approach within a uniaxially-oriented nematic LC, an elastic force is generated due to the distorted nematic director configuration around them, allowing particles to self-assemble by an attractive force. We hypothesize that if particles are immobilized, repulsive forces emerge instead, causing the deflection of the interacting defects to compensate for the energy increase. EXPERIMENTS: We fabricated tailored arrays of spherical silica microparticles via capillarity-assisted particle assembly (CAPA) to investigate the interactions of defects as a function of particle separation. By transferring the particle arrays from the CAPA templates to a glass substrate, we studied interacting boojum defect textures within thin LC films sandwiched between two substrates using polarized optical microscopy (POM). FINDINGS: We observed deflected boojum defects on arrays of fixed silica particles, confirming our hypothesis that the elastic repulsive force between the particles affects the defect orientation. The nematic director configuration is reconstructed by Landau-de Gennes q-tensor modeling, and simulated POM images are obtained by the Jones-Matrix method. Our results provide a new platform for controlling defect interactions and pave the way for future work to study topology and implement new defect based applications in LC films.

20.
Soft Matter ; 19(17): 3069-3079, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37043248

ABSTRACT

Tracking the three-dimensional rotation of colloidal particles is essential to elucidate many open questions, e.g. concerning the contact interactions between particles under flow, or the way in which obstacles and neighboring particles affect self-propulsion in active suspensions. In order to achieve rotational tracking, optically anisotropic particles are required. We synthesise here rough spherical colloids that present randomly distributed fluorescent asperities and track their motion under different experimental conditions. Specifically, we propose a new algorithm based on a 3-D rotation registration, which enables us to track the 3-D rotation of our rough colloids at short time-scales, using time series of 2-D images acquired at high frame rates with a conventional wide-field microscope. The method is based on the image correlation between a reference image and rotated 3-D prospective images to identify the most likely angular displacements between frames. We first validate our approach against simulated data and then apply it to the cases of: particles flowing through a capillary, freely diffusing at solid-liquid and liquid-liquid interfaces, and self-propelling above a substrate. By demonstrating the applicability of our algorithm and sharing the code, we hope to encourage further investigations in the rotational dynamics of colloidal systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...