Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(24): 10997-11005, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38833549

ABSTRACT

Effective removal of chemically toxic selenium oxoanions at high-capacity and trace levels from contaminated water remains a challenge in current scientific pursuits. Here, we report the functionalization of the MgAl layered double hydroxide with molybdenum-oxysulfide (MoO2S2) anion, referred to as LDH-MoO2S2, and its potential to sequester SeVIO42- and SeIVO32- from aqueous solution. LDH-MoO2S2 nanosheets were synthesized by an ion exchange method in solution. Synchrotron X-ray pair distribution function (PDF) and extended X-ray absorption fine structure (EXAFS) revealed an unexpected transformation of the MoO2S22- to Mo2O2S62- like species during the intercalation process. LDH-MoO2S2 is remarkably efficient in removing SeO42- and SeO32- ions from the ppm to trace level (≤10 ppb), with distribution constant (Kd) ranging from 104 to 105 mL/g. This material showed exceptionally high sorption capacities of 237 and 358 mg/g for SeO42- and SeO32-, respectively. Furthermore, LDH-MoO2S2 demonstrates substantial affinity and efficiency to remove SeO32-/SeO42- even in the presence of competitive ions from contaminated water. Hence, the removal of selenium (VI/IV) oxoanions collectively occurs through reductive precipitation and ion exchange mechanisms. This work provides significant insights into the chemical structure of the MoO2S2 anion into LDH and emphasizes its exceptional potential for high-capacity selenium removal and positioning it as a premier sorbent for selenium oxoanions.

2.
Dalton Trans ; 53(24): 10037-10049, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38775042

ABSTRACT

Water constitutes an indispensable resource for global life but remains susceptible to pollution from diverse human activities. To mitigate this issue, researchers are committed to purifying water using a variety of materials to remove harmful chemicals, such as heavy metals. Layered double hydroxides (LDHs), with their intriguing, layered structure and chemical behavior, have attained substantial attention for their effectiveness in removing heavy metal cations and various inorganic oxoanions from water. To enhance the efficiency, considerable endeavors have focused on functionalizing LDHs with different chemical species. Intercalation with metal sulfides has proven to be particularly effective, facilitating heavy metal absorption through multiple mechanisms, including ion-exchange, reductive precipitation, and surface sorption. This review concentrates on the synthesis and performance of polysulfide (Sx, x = 2-5), Mo-S, and Sn-S anion intercalated LDHs for heavy metal cations and inorganic oxoanion sorption, along with their mechanisms. Furthermore, the discussion includes prospects for expanding the chemistry of metal sulfide intercalated LDHs, with existing challenges and future outlooks.

3.
Small ; : e2400679, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488771

ABSTRACT

Chalcogel represents a unique class of meso- to macroporous nanomaterials that offer applications in energy and environmental pursuits. Here, the synthesis of an ion-exchangeable amorphous chalcogel using a nominal composition of K2 CoMo2 S10 (KCMS) at room temperature is reported. Synchrotron X-ray pair distribution function (PDF), X-ray absorption near-edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) reveal a plausible local structure of KCMS gel consisting of Mo5+ 2 and Mo4+ 3 clusters in the vicinity of di/polysulfides which are covalently linked by Co2+ ions. The ionically bound K+ ions remain in the percolating pores of the Co-Mo-S covalent network. XANES of Co K-edge shows multiple electronic transitions, including quadrupole (1s→3d), shakedown (1s→4p + MLCT), and dipole allowed 1s→4p transitions. Remarkably, despite a lack of regular channels as in some crystalline solids, the amorphous KCMS gel shows ion-exchange properties with UO2 2+ ions. Additionally, it also presents surface sorption via [S∙∙∙∙UO2 2+ ] covalent interactions. Overall, this study underscores the synthesis of quaternary chalcogels incorporating alkali metals and their potential to advance separation science for cations and oxo-cationic species by integrating a synergy of surface sorption and ion-exchange.

4.
ChemSusChem ; 17(11): e202400084, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38519865

ABSTRACT

Despite large theoretical energy densities, metal-sulfide electrodes for energy storage systems face several limitations that impact the practical realization. Here, we present the solution-processable, room temperature (RT) synthesis, local structures, and application of a sulfur-rich Mo3S13 chalcogel as a conversion-based electrode for lithium-sulfide batteries (LiSBs). The structure of the amorphous Mo3S13 chalcogel is derived through operando Raman spectroscopy, synchrotron X-ray pair distribution function (PDF), X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) analysis, along with ab initio molecular dynamics (AIMD) simulations. A key feature of the three-dimensional (3D) network is the connection of Mo3S13 units through S-S bonds. Li/Mo3S13 half-cells deliver initial capacity of 1013 mAh g-1 during the first discharge. After the activation cycles, the capacity stabilizes and maintains 312 mAh g-1 at a C/3 rate after 140 cycles, demonstrating sustained performance over subsequent cycling. Such high-capacity and stability are attributed to the high density of (poly)sulfide bonds and the stable Mo-S coordination in Mo3S13 chalcogel. These findings showcase the potential of Mo3S13 chalcogels as metal-sulfide electrode materials for LiSBs.

5.
Chem Rev ; 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36728153

ABSTRACT

Ionizing radiation such as X-rays and γ-rays has been extensively studied and used in various fields such as medical imaging, radiographic nondestructive testing, nuclear defense, homeland security, and scientific research. Therefore, the detection of such high-energy radiation with high-sensitivity and low-cost-based materials and devices is highly important and desirable. Halide perovskites have emerged as promising candidates for radiation detection due to the large light absorption coefficient, large resistivity, low leakage current, high mobility, and simplicity in synthesis and processing as compared with commercial silicon (Si) and amorphous selenium (a-Se). In this review, we provide an extensive overview of current progress in terms of materials development and corresponding device architectures for radiation detection. We discuss the properties of a plethora of reported compounds involving organic-inorganic hybrid, all-inorganic, all-organic perovskite and antiperovskite structures, as well as the continuous breakthroughs in device architectures, performance, and environmental stability. We focus on the critical advancements of the field in the past few years and we provide valuable insight for the development of next-generation materials and devices for radiation detection and imaging applications.

6.
Environ Sci Technol ; 56(12): 8590-8598, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35647805

ABSTRACT

Removal of chromate (CrO42-) and pertechnetate (TcO4-) from the Hanford Low Activity Waste (LAW) is beneficial as it impacts the cost, life cycle, operational complexity of the Waste Treatment and Immobilization Plant (WTP), and integrity of vitrified glass for nuclear waste disposal. Here, we report the application of [MoIV3S13]2- intercalated layer double hydroxides (LDH-Mo3S13) for the removal of CrO42- as a surrogate for TcO4-, from ppm to ppb levels from water and a simulated LAW off-gas condensate of Hanford's WTP. LDH-Mo3S13 removes CrO42- from the LAW condensate stream, having a pH of 7.5, from ppm (∼9.086 × 104 ppb of Cr6+) to below 1 ppb levels with distribution constant (Kd) values of up to ∼107 mL/g. Analysis of postadsorbed solids indicates that CrO42- removal mainly proceeds by reduction of Cr6+ to Cr3+. This study sets the first example of a metal sulfide intercalated LDH for the removal of CrO42-, as relevant to TcO4-, from the simulated off-gas condensate streams of Hanford's LAW melter which contains highly concentrated competitive anions, namely F-, Cl-, CO32-, NO3-, BO33-, NO2-, SO42-, and B4O72-. LDH-Mo3S13's remarkable removal efficiency makes it a promising sorbent to remediate CrO42-/TcO4- from surface water and an off-gas condensate of nuclear waste.


Subject(s)
Radioactive Waste , Chromates , Hydroxides , Water
7.
MethodsX ; 9: 101755, 2022.
Article in English | MEDLINE | ID: mdl-35769611

ABSTRACT

Uranium (U) is a ubiquitous trace element in soils. With increasing in application of U in nuclear energy and nuclear weapon, a large amount of U was dissipated into the environment including soil and water. Earthworm may be an eco-indicator for U bioaccumulation, transformation and transport across the ecosystem. There have been a variety of methods preformed to assess the bioaccumulation of uranium in small organisms such as earthworms, including uranium speciation, subcellular separation, and total U accumulation. All methods require an initial grinding preparation process that allows for the further fractionation of metals and metalloids in earthworms. The slime like mucus that coats the body of a worm presents a challenge in the disintegration and dissolution of the worm body. In order to analyze U subcellular forms, we developed a reliable and effective procedure to grind the worm body into a uniform fine suspension. We conducted a comparative study of disintegration of worms with 3 grinding techniques (agate mortar, liquid nitrogen freezing then agate mortar, and direct sonication) that would assist U subcellular analyses and bioaccumulation. The essences of this new development was as follows:•A scheme for preparation of earthworm samples for investigation of subcellular U forms in earthworms from U.S. army weapon test range soil with various U forms.•The direct sonication of earthworms was found to be the most proficient process in achieving the best preparation for U subcellular analyses with the high precision.

8.
MethodsX ; 9: 101678, 2022.
Article in English | MEDLINE | ID: mdl-35433290

ABSTRACT

Uranium is a naturally occurring radioactive trace element found in rocks, soils, and coals. U may contaminate groundwater and soil from nuclear power plant operations, spent fuel reprocessing, high-level waste disposal, ore mining and processing, or manufacturing processes. Yuma Proving Ground in Arizona, USA has been used depleted uranium ballistics for 36 years where U has accumulated in this army testing site. The objective of this study is to develop a laboratory scheme on the effects of soil moisture regiments on the distribution and partitioning of U in army range soil among solid phase components to mimic U biogeochemical processes in the field. Three moisture regiments were saturated paste, field capacity, and wetting-drying cycle which covered major scenarios in fields from the wet summer season to the dry winter season. Uranium in soils with different forms of U (UO2, UO3, uranyl, and schoepite) was fractionated into 8 operationally defined solid components with sequential selective dissolution procedure. The essences of this new development were as following:•A scheme was developed for investigation of U distribution, partitioning and transformation among solid phase components in army weapon test range soils with various U forms under 3 soil moisture regimes.•Soil moisture was one of major environmental factors in controlling biogeochemical processes and fates of U in army weapon test site.

9.
Angew Chem Int Ed Engl ; 61(1): e202112511, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34709699

ABSTRACT

We demonstrate a new material by intercalating Mo3 S13 2- into Mg/Al layered double hydroxide (abbr. Mo3 S13 -LDH), exhibiting excellent capture capability for toxic Hg2+ and noble metal silver (Ag). The as-prepared Mo3 S13 -LDH displays ultra-high selectivity of Ag+ , Hg2+ and Cu2+ in the presence of various competitive ions, with the order of Ag+ >Hg2+ >Cu2+ >Pb2+ ≥Co2+ , Ni2+ , Zn2+ , Cd2+ . For Ag+ and Hg2+ , extremely fast adsorption rates (≈90 % within 10 min, >99 % in 1 h) are observed. Much high selectivity is present for Ag+ and Cu2+ , especially for trace amounts of Ag+ (≈1 ppm), achieving a large separation factor (SFAg/Cu ) of ≈8000 at the large Cu/Ag ratio of 520. The overwhelming adsorption capacities for Ag+ (qm Ag =1073 mg g-1 ) and Hg2+ (qm Hg =594 mg g-1 ) place the Mo3 S13 -LDH at the top of performing sorbent materials. Most importantly, Mo3 S13 -LDH captures Ag+ via two paths: a) formation of Ag2 S due to Ag-S complexation and precipitation, and b) reduction of Ag+ to metallic silver (Ag0 ). The Mo3 S13 -LDH is a promising material to extract low-grade silver from copper-rich minerals and trap highly toxic Hg2+ from polluted water.

10.
ACS Earth Space Chem ; 5(2): 356-364, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-34337281

ABSTRACT

Uranium is a chemically toxic and radioactive heavy metal. Depleted uranium (DU) is the byproduct of the uranium enrichment process, with a majority of U as uranium-238, and a lower content of the fissile isotope uranium-235 than natural uranium. Uranium-235 is mainly used in nuclear reactors and in the manufacture of nuclear weapons. Exposure is likely to have an impact on humans or the ecosystem where military operations have used DU. Yuma Proving Ground in Arizona, USA has been using depleted uranium ballistics for 36 years. At a contaminated site in the Proving Grounds, soil samples were collected from the flat, open field and lower elevated trenches that typically collect summer runoff. Spatial distribution and fractionation of uranium in the fields were analyzed with total acid digestion and selective sequential dissolution with eight operationally defined solid-phase fractions. In addition to uranium, other trace elements (As, Ba, Co, Cr, Cu, Hg, Mo, Nb, Pd, Pb, V, Zn, Zr) were also assessed. Results show that the trench area in the testing site had a higher accumulation of total U (12.4%) compared to the open-field soil with 279 mg/kg U. Among the eight solid-phase components in the open-field samples, U demonstrated stronger affinities for the amorphous iron-oxide bound, followed by the carbonate bound, and the residual fractions. However, U in the trench area had a stronger binding to the easily reducible oxide bound fraction, followed by the carbonate-bound and amorphous iron-oxide-bound fractions. Among other trace elements, Nb, As, and Zr exhibited the strongest correlations with U distribution among solid-phase components. This study indicates a significant spatial variation of U distribution in the shooting range site. Fe/Mn oxides and carbonate were the major solid-phase components for binding U in the weapon test site.

11.
MethodsX ; 8: 101275, 2021.
Article in English | MEDLINE | ID: mdl-34434795

ABSTRACT

A modification method of clay mineral surface was developed to improve its adsorption capacity of uranium. Uranium is a radionuclide with high toxicity and extremely long half-life, which can pollute the environment and endanger human health. This study proposes a new method of activation of clay mineral surface with phosphoric acid for rapid adsorption of uranium from aqueous solution. Compared with other modification methods, this method has the advantages of availability of raw materials, simple operation and good adsorption effects. It provides a cost-effective material to capture uranium ions from water. The essences of this new development are as following: • Activation and changes of clay minerals' surface functionalities with the treatment of phosphoric acid • Controlled modifications of the surface properties of the clay towards the enhancement of U adsorption capacity • Rapid removal of uranium from water.

12.
J Am Chem Soc ; 143(16): 6221-6228, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33856803

ABSTRACT

Chalcogenide-based phase change memory (PCM) is a key enabling technology for optical data storage and electrical nonvolatile memory. Here, we report a new phase change chalcogenide consisting of a 3D network of ionic (K···Se) and covalent bonds (Bi-Se), K2Bi8Se13 (KBS). Thin films of amorphous KBS deposited by DC sputtering are structurally and chemically homogeneous and exhibit a surface roughness of 5 nm. The KBS film crystallizes upon heating at ∼483 K. The optical bandgap of the amorphous film is about 1.25 eV, while its crystalline phase has a bandgap of ∼0.65 eV shows 2-fold difference between the two states. The bulk electrical conductivity of the amorphous and crystalline film is ∼7.5 × 10-4 and ∼2.7 × 10-2 S/cm, respectively. We have demonstrated a phase change memory effect in KBS by Joule heating in a technologically relevant vertical memory cell architecture. Upon Joule heating, the vertical device undergoes switching from its amorphous to crystalline state of KBS at 1-1.5 V (∼50 kV/cm), increasing conductivity by a factor of ∼40. Besides the large electrical and optical contrast in the crystalline and amorphous KBS, its elemental cost-effectiveness, stoichiometry, fast crystallization kinetics, as determined by the ratio of the glass transition and melting temperature, Tg/Tm ∼ 0.5, as well as the scalable synthesis of the thin film determine that KBS is a promising PC material for next general phase change memory.

13.
J Am Chem Soc ; 142(3): 1574-1583, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31855420

ABSTRACT

The new material Polypyrrole-Mo3S13 (abbr. Mo3S13-Ppy) is a new material prepared by ion-exchange between Ppy-NO3 and (NH4)2Mo3S13. The Mo3S13-Ppy was designed to exhibit strong selectivity for Ag+ and highly toxic Hg2+ in mixtures with other ions. It displays an apparent selectivity ranking of Hg2+ > Ag+ ≥ Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+. The strong affinity of Mo3S13-Ppy for Ag+ and Hg2+ was confirmed with extremely high distribution coefficients (Kd) (∼107 mL/g) and remarkable removal efficiencies (>99.99%), resulting in <1 ppb concentrations of these ions. Furthermore, Mo3S13-Ppy achieved excellent separation selectivity for Ag+ from Cu2+ (even at a high Cu2+/Ag+ ratio, the molar ratio of 867 and mass ratio of 500) because of the special structure of Mo3S132- and its component Mo4+ and (S2)2-. This is promising for the direct extraction of low-grade silver from copper-rich minerals. The maximum Ag uptake capacity of 408 mg/g is redox-based and surprisingly involves the deposition of large, millimeter sized, metallic silver (Ag0) crystals on the surface of Mo3S13-Ppy.

14.
J Am Chem Soc ; 141(26): 10417-10430, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31244177

ABSTRACT

The design of low-cost yet high-efficiency electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) over a wide pH range is highly challenging. We now report a hierarchical co-assembly of interacting MoS2 and Co9S8 nanosheets attached on Ni3S2 nanorod arrays which are supported on nickel foam (NF). This tiered structure endows high performance toward HER and OER over a very broad pH range. By adjusting the molar ratio of the Co:Mo precursors, we have created CoMoNiS-NF- xy composites ( x: y means Co:Mo molar ratios ranging from 5:1 to 1:3) with controllable morphology and composition. The three-dimensional composites have an abundance of active sites capable of universal pH catalytic HER and OER activity. The CoMoNiS-NF-31 demonstrates the best electrocatalytic activity, giving ultralow overpotentials (113, 103, and 117 mV for HER and 166, 228, and 405 mV for OER) to achieve a current density of 10 mA cm-2 in alkaline, acidic, and neutral electrolytes, respectively. It also shows a remarkable balance between electrocatalytic activity and stability. Based on the distinguished catalytic performance of CoMoNiS-NF-31 toward HER and OER, we demonstrate a two-electrode electrolyzer performing water electrolysis over a wide pH range, with low cell voltages of 1.54, 1.45, and 1.80 V at 10 mA cm-2 in alkaline, acidic, and neutral media, respectively. First-principles calculations suggest that the high OER activity arises from electron transfer from Co9S8 to MoS2 at the interface, which alters the binding energies of adsorbed species and decreases overpotentials. Our results demonstrate that hierarchical metal sulfides can serve as highly efficient all-pH (pH = 0-14) electrocatalysts for overall water splitting.

15.
Nano Lett ; 18(11): 7104-7110, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30296380

ABSTRACT

Molybdenum disulfide (MoS2) has been recognized as a promising cost-effective catalyst for water-splitting hydrogen production. However, the desired performance of MoS2 is often limited by insufficient edge-terminated active sites, poor electrical conductivity, and inefficient contact to the supporting substrate. To address these limitations, we developed a unique nanoarchitecture (namely, winged Au@MoS2 heterostructures enabled by our discovery of the "seeding effect" of Au nanoparticles for the chemical vapor deposition synthesis of vertically aligned few-layer MoS2 wings). The winged Au@MoS2 heterostructures provide an abundance of edge-terminated active sites and are found to exhibit dramatically improved electrocatalytic activity for the hydrogen evolution reaction. Theoretical simulations conducted for this unique heterostructure reveal that the hydrogen evolution is dominated by the proton adsorption step, which can be significantly promoted by introducing sufficient edge active sites. Our study introduces a new morphological engineering strategy to make the pristine MoS2 layered structures highly competitive earth-abundant catalysts for efficient hydrogen production.

16.
ACS Appl Mater Interfaces ; 10(44): 38193-38200, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30299078

ABSTRACT

Ultrafast synthesis of high-quality transition-metal dichalcogenide nanocrystals, such as molybdenum disulfide (MoS2), is technologically relevant for large-scale production of electronic and optoelectronic devices. Here, we report a rapid solid-state synthesis route for MoS2 using the chemically homogeneous molecular precursor, (NH4)2Mo3S13·H2O, resulting in nanoparticles with estimated size down to 25 nm only in 10 s at 1000 °C. Despite the extreme nonequilibrium conditions, the resulting porous MoS2 nanoparticles remain aggregated to preserve the form of the original rod shape bulk morphology of the molecular precursor. This ultrafast synthesis proceeds through the rapid decomposition of the precursor and rearrangement of Mo and S atoms coupled with simultaneous efficient release of massive gaseous species, to create nanoscale porosity in the resulting isomorphic pseudocrystals, which are composed of the MoS2 nanoparticles. Despite the very rapid escape of massive amounts of NH3, H2O, H2S, and S gases from the (NH4)2Mo3S13·H2O mm sized crystals, they retain their original shape as they convert to MoS2 rather than undergo explosive destruction from the rapid escape process of the gases. The obtained pseudocrystals are made of aggregated MoS2 nanocrystals exhibit a Brunauer-Emmett-Teller surface area of ∼35 m2/g with an adsorption average pore width of ∼160 Å. The nanoporous MoS2 crystals are solution processable by dispersing in ethanol and water and can be cast into large-area uniform composite films. Photodetectors fabricated from these films show more than 2 orders of magnitude higher conductivity (∼6.25 × 10-6 S/cm) and photoconductive gain (20 mA/W) than previous reports of MoS2 composite films. The optoelectronic properties of this nanoporous MoS2 imply that the shallow defects that originate from the ultrafast synthesis act as sensitizing centers that increase the photocurrent gain via two-level recombination kinetics.

17.
Inorg Chem ; 57(15): 9403-9411, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30009600

ABSTRACT

Two new layered compounds Rb2ZnBi2Se5 and Cs6Cd2Bi8Te17 are described. Rb2ZnBi2Se5 crystallizes in the orthorhombic space group Pnma, with lattice parameters of a = 15.6509(17) Å, b = 4.218(8) Å, and c = 18.653(3) Å. Cs6Cd2Bi8Te17 crystallizes in the monoclinic C2/ m space group, with a = 28.646(6) Å, b = 4.4634(9) Å, c = 21.164(4) Å, and ß = 107.65(3)°. The two structures are different and composed of anionic layers which are formed by inter connecting of BiQ6 octahedra (Q = Se or Te) and MQ4 (M = Zn or Cd) tetrahedra. The space between the layers hosts alkali metal as counter cations. The rubidium atoms of Rb2ZnBi2Se5 structure can be exchanged with other cations (Cd2+, Pb2+ and Zn2+) in aqueous solutions forming new phases. Rb2ZnBi2Se5 is an n-type semiconductor and exhibits an indirect band gap energy of 1.0 eV. Rb2ZnBi2Se5 is a congruently melting compound (mp ∼644 °C). The thermal conductivity of this semiconductor is very low with 0.38 W·m-1·K-1 at 873 K. Density functional theory (DFT) calculations suggest that the low lattice thermal conductivity of Rb2ZnBi2Se5 is attributed to heavy Bi atom induced slow phonon velocities and large Gruneisen parameters especially in the a and c directions. The thermoelectric properties of Rb2ZnBi2Se5 were characterized with the highest ZT value of ∼0.25 at 839 K.

18.
J Am Chem Soc ; 140(29): 9261-9268, 2018 07 25.
Article in English | MEDLINE | ID: mdl-29956935

ABSTRACT

The phase-change (PC) materials in the majority of optical data storage media in use today exhibit a fast, reversible crystal → amorphous phase transition that allows them to be switched between on (1) and off (0) binary states. Solid-state inorganic materials with this property are relatively common, but those exhibiting an amorphous → amorphous transition called polyamorphism are exceptionally rare. K2Sb8Se13 (KSS) reported here is the first example of a material that has both amorphous → amorphous polyamorphic transition and amorphous → crystal transition at easily accessible temperatures (227 and 263 °C, respectively). The transitions are associated with the atomic coordinative preferences of the atoms, and all three states of K2Sb8Se13 are stable in air at 25 °C and 1 atm. All three states of K2Sb8Se13 exhibit distinct optical bandgaps, Eg = 1.25, 1.0, and 0.74 eV, for the amorphous-II, amorphous-I, and crystalline versions, respectively. The room-temperature electrical conductivity increases by more than 2 orders of magnitude from amorphous-I to -II and by another 2 orders of magnitude from amorphous-II to the crystalline state. This extraordinary behavior suggests that a new class of materials exist which could provide multistate level systems to enable higher-order computing logic circuits, reconfigurable logic devices, and optical switches.

19.
J Am Chem Soc ; 139(36): 12745-12757, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28782951

ABSTRACT

We demonstrate fast, highly efficient concurrent removal of toxic oxoanions of Se(VI) (SeO42-) and Se(IV) (SeO32-/HSeO3-) and heavy metal ions of Hg2+, Cu2+, and Cd2+ by the MoS42- intercalated Mg/Al layered double hydroxide (MgAl-MoS4-LDH, abbr. MoS4-LDH). Using the MoS4-LDH as a sorbent, we observe that the presence of Hg2+ ions greatly promotes the capture of SeO42-, while the three metal ions (Hg2+, Cu2+, Cd2+) enable a remarkable improvement in the removal of SeO32-/HSeO3-. For the pair Se(VI)+Hg2+, the MoS4-LDH exhibits outstanding removal rates (>99.9%) for both Hg2+ and Se(VI), compared to 81% removal for SeO42- alone. For individual SeO32- (without metal ions), 99.1% Se(IV) removal is achieved, while ≥99.9% removals are reached in the presence of Hg2+, Cu2+, and Cd2+. Simultaneously, the removal rates for these metal ions are also >99.9%, and nearly all concentrations of the elements can be reduced to <10 ppb, a limit acceptable for drinking water. The maximum sorption capacities for individual Se(VI) and Se(IV) are 85 and 294 mg/g, respectively. The 294 mg/g capacity for Se(IV) reaches a record value, placing the MoS4-LDH among the highest-capacity selenite adsorbing materials described to date. More interestingly, the presence of metal ions extremely accelerates the capture of the selenium oxoanions because of the reactions of the metal ions with the interlayer MoS42- anions. The sorptions of Se(VI)+Hg and Se(IV)+M (M = Hg2+, Cu2+, Cd2+) are exceptionally rapid, showing >99.5% removals for Hg2+ within 1 min and ∼99.0% removal for Se(VI) within 30 min, as well as >99.5% removals for pairs Cu2+ and Se(IV) within 10 min, and Cd2+ and Se(IV) within 30 min. During the sorption of SeO32-/HSeO3-, reduction of Se(IV) occurs to Se0 caused by the S2- sites in MoS42-. Sorption kinetics for the oxoanions follows a pseudo-second-order model consistent with chemisorption. The intercalated material of MoS4-LDH is very promising as a highly effective filter for decontamination of water with toxic Se(IV)/Se(VI) oxoanions along with heavy metals such as Hg2+, Cd2+, and Cu2+.

20.
J Am Chem Soc ; 139(36): 12601-12609, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28806875

ABSTRACT

Four new layered chalcogenides Cs1.2Ag0.6Bi3.4S6, Cs1.2Ag0.6Bi3.4Se6, Cs0.6Ag0.8Bi2.2S4, and Cs2Ag2.5Bi8.5Se15 are described. Cs1.2Ag0.6Bi3.4S6 and Cs1.2Ag0.6Bi3.4Se6 are isostructural and have a hexagonal P63/mmc space group; their structures consist of [Ag/Bi]2Q3 (Q = S, Se) quintuple layers intercalated with disordered Cs cations. Cs0.6Ag0.8Bi2.2S4 also adopts a structure with the hexagonal P63/mmc space group and its structure has an [Ag/Bi]3S4 layer intercalated with a Cs layer. Cs1.2Ag0.6Bi3.4S6 and Cs0.6Ag0.8Bi2.2S4 can be ascribed to a new homologous family Ax[MmS1+m] (m = 1, 2, 3···). Cs2Ag2.5Bi7.5Se15 is orthorhombic with Pnnm space group, and it is a new member of the A2[M5+nSe9+n] homology with n = 6. The Cs ions in Cs1.2Ag0.6Bi3.4S6 and Cs0.6Ag0.8Bi2.2S4 can be exchanged with other cations, such as Ag+, Cd2+, Co2+, Pb2+, and Zn2+ forming new phases with tunable band gaps between 0.66 and 1.20 eV. Cs1.2Ag0.6Bi3.4S6 and Cs0.6Ag0.8Bi2.2S4 possess extremely low thermal conductivity (<0.6 W·m-1·K-1).

SELECTION OF CITATIONS
SEARCH DETAIL
...