Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(2): 2528-2535, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38250408

ABSTRACT

Electronics that disintegrate after stable operation present exciting opportunities for niche medical implant and consumer electronics applications. The disintegration of these devices can be initiated due to their medium conditions or triggered by external stimuli, which enables on-demand transition. An external stimulation method that can penetrate deep inside the body could revolutionize the use of transient electronics as implantable medical devices (IMDs), eliminating the need for secondary surgery to remove the IMDs. We report near-infrared (NIR) light-triggered transition of metastable cyclic poly(phthalaldehyde) (cPPA) polymers. The transition of the encapsulation layer is achieved through the conversion of NIR light to heat, facilitated by bioresorbable metals, such as molybdenum (Mo). We reported a rapid degradation of cPPA encapsulation layer about 1 min, and the rate of degradation can be controlled by laser power and exposure time. This study offers a new approach for light triggerable transient electronics for IMDs due to the deep penetration depth of NIR light through to organs and tissues.

2.
Adv Mater ; 36(2): e2304704, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37709513

ABSTRACT

Dermal interstitial fluid (ISF) is emerging as a rich source of biomarkers that complements conventional biofluids such as blood and urine. However, the impact of ISF sampling in clinical applications has been limited owing to the challenges associated with extraction. The implementation of microneedle-based wearable devices that can extract dermal ISF in a pain-free and easy-to-use manner has attracted growing attention in recent years. Here, a fully integrated touch-activated wearable device based on a laser-drilled hollow microneedle (HMN) patch for continuous sampling and sensing of dermal ISF is introduced. The developed platform can produce and maintain the required vacuum pressure (as low as ≈ -53 kPa) to collect adequate volumes of ISF (≈2 µL needle-1 h-1 ) for medical applications. The vacuum system can be activated through a one-touch finger operation. A parametric study is performed to investigate the effect of microneedle array size, vacuum pressure, and extraction duration on collected ISF. The capability of the proposed platform for continuous health monitoring is further demonstrated by the electrochemical detection of glucose and pH levels of ISF in animal models. This HMN-based system provides an alternative tool to the existing invasive techniques for ISF collection and sensing for medical diagnosis and treatment.


Subject(s)
Extracellular Fluid , Wearable Electronic Devices , Animals , Touch , Glucose , Needles
3.
Nat Food ; 4(5): 427-436, 2023 05.
Article in English | MEDLINE | ID: mdl-37202486

ABSTRACT

Food spoilage results in food waste and food-borne diseases. Yet, standard laboratory tests to determine spoilage (mainly volatile biogenic amines) are not performed regularly by supply chain personnel or end customers. Here we developed a poly(styrene-co-maleic anhydride)-based, miniature (2 × 2 cm2) sensor for on-demand spoilage analysis via mobile phones. To demonstrate a real-life application, the wireless sensor was embedded into packaged chicken and beef; consecutive readings from meat samples using the sensor under various storage conditions enabled the monitoring of spoilage. While samples stored at room temperature showed an almost 700% change in sensor response on the third day, those stored in the freezer resulted in an insignificant change in sensor output. The proposed low-cost, miniature wireless sensor nodes can be integrated into packaged foods, helping consumers and suppliers detect spoilage of protein-rich foods on demand, and ultimately preventing food waste and food-borne diseases.


Subject(s)
Foodborne Diseases , Refuse Disposal , Animals , Cattle , Food Packaging/methods , Meat/analysis
4.
Adv Healthc Mater ; 12(23): e2300318, 2023 09.
Article in English | MEDLINE | ID: mdl-37235849

ABSTRACT

Recent materials, microfabrication, and biotechnology improvements have introduced numerous exciting bioelectronic devices based on piezoelectric materials. There is an intriguing evolution from conventional unrecyclable materials to biodegradable, green, and biocompatible functional materials. As a fundamental electromechanical coupling material in numerous applications, novel piezoelectric materials with a feature of degradability and desired electrical and mechanical properties are being developed for future wearable and implantable bioelectronics. These bioelectronics can be easily integrated with biological systems for applications, including sensing physiological signals, diagnosing medical problems, opening the blood-brain barrier, and stimulating healing or tissue growth. Therefore, the generation of piezoelectricity from natural and synthetic bioresorbable polymers has drawn great attention in the research field. Herein, the significant and recent advancements in biodegradable piezoelectric materials, including natural and synthetic polymers, their principles, advanced applications, and challenges for medical uses, are reviewed thoroughly. The degradation methods of these piezoelectric materials through in vitro and in vivo studies are also investigated. These improvements in biodegradable piezoelectric materials and microsystems could enable new applications in the biomedical field. In the end, potential research opportunities regarding the practical applications are pointed out that might be significant for new materials research.


Subject(s)
Biocompatible Materials , Polymers , Polymers/metabolism , Biocompatible Materials/metabolism , Prostheses and Implants
5.
ACS Nano ; 17(4): 3430-3441, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36796108

ABSTRACT

Increasing plants' photosynthetic efficiency is a major challenge that must be addressed in order to cover the food demands of the growing population in the changing climate. Photosynthesis is greatly limited at the initial carboxylation reaction, where CO2 is converted to the organic acid 3-PGA, catalyzed by the RuBisCO enzyme. RuBisCO has poor affinity for CO2, but also the CO2 concentration at the RuBisCO site is limited by the diffusion of atmospheric CO2 through the various leaf compartments to the reaction site. Beyond genetic engineering, nanotechnology can offer a materials-based approach for enhancing photosynthesis, and yet, it has mostly been explored for the light-dependent reactions. In this work, we developed polyethyleneimine-based nanoparticles for enhancing the carboxylation reaction. We demonstrate that the nanoparticles can capture CO2 in the form of bicarbonate and increase the CO2 that reacts with the RuBisCO enzyme, enhancing the 3-PGA production in in vitro assays by 20%. The nanoparticles can be introduced to the plant via leaf infiltration and, because of the functionalization with chitosan oligomers, they do not induce any toxic effect to the plant. In the leaves, the nanoparticles localize in the apoplastic space but also spontaneously reach the chloroplasts where photosynthetic activity takes place. Their CO2 loading-dependent fluorescence verifies that, in vivo, they maintain their ability to capture CO2 and can be therefore reloaded with atmospheric CO2 while in planta. Our results contribute to the development of a nanomaterials-based CO2-concentrating mechanism in plants that can potentially increase photosynthetic efficiency and overall plants' CO2 storage.


Subject(s)
Chitosan , Nanoparticles , Carbon Dioxide , Polyethyleneimine , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Photosynthesis , Plants/metabolism , Plant Leaves/metabolism
6.
Adv Mater ; 35(6): e2207081, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36401580

ABSTRACT

Biodegradable sensors based on integrating conductive layers with polymeric materials in flexible and stretchable forms have been established. However, the lack of a generalized microfabrication method results in large-sized, low spatial density, and low device yield compared to the silicon-based devices manufactured via batch-compatible microfabrication processes. Here, a batch fabrication-compatible photolithography-based microfabrication approach for biodegradable and highly miniaturized essential sensor components is presented on flexible and stretchable substrates. Up to 1600 devices are fabricated within a 1 cm2 footprint and then the functionality of various biodegradable passive electrical components, mechanical sensors, and chemical sensors is demonstrated on flexible and stretchable substrates. The results are highly repeatable and consistent, proving the proposed method's high device yield and high-density potential. This simple, innovative, and robust fabrication recipe allows complete freedom over the applicability of various biodegradable materials with different properties toward the unique application of interests. The process offers a route to utilize standard micro-fabrication procedures toward scalable fabrication of highly miniaturized flexible and stretchable transient sensors and electronics.

7.
Nat Commun ; 13(1): 6872, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36369509

ABSTRACT

Explosive percolation is an experimentally-elusive phenomenon where network connectivity coincides with onset of an additional modification of the system; materials with correlated localisation of percolating particles and emergent conductive paths can realise sharp transitions and high conductivities characteristic of the explosively-grown network. Nanocomposites present a structurally- and chemically-varied playground to realise explosive percolation in practically-applicable systems but this is yet to be exploited by design. Herein, we demonstrate composites of graphene oxide and synthetic polymer latex which form segregated networks, leading to low percolation threshold and localisation of conductive pathways. In situ reduction of the graphene oxide at temperatures of <150 °C drives chemical modification of the polymer matrix to produce species with phenolic groups, which are known crosslinking agents. This leads to conductivities exceeding those of dense-packed networks of reduced graphene oxide, illustrating the potential of explosive percolation by design to realise low-loading composites with dramatically-enhanced electrical transport properties.

8.
Biosens Bioelectron ; 213: 114450, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35688025

ABSTRACT

Glucose monitoring before, during, and after exercise is essential for people with diabetes as exercise increases the risk of activity-induced hyper- and hypo-glycemic events. The situation is even more challenging for athletes with diabetes as they have impaired metabolic control compared to sedentary individuals. In this regard, a compact and noninvasive wearable glucose monitoring device that can be easily worn is critical to enabling glucose monitoring. This report presents an ultra-compact glucose tag with a footprint and weight of 1.2 cm2 and 0.13 g, respectively, for sweat analysis. The device comprises a near field communication (NFC) chip, antenna, electrochemical sensor, and microfluidic channels implemented in different material layers. The device has a flexible and conformal structure and can be easily attached to different body parts. The battery-less operation of the device was enabled by NFC-based wireless power transmission and the compact antenna. Femtosecond laser ablation was employed to fabricate a highly compact and flexible NFC antenna. The proposed device demonstrated excellent operating characteristics with a limit of detection (LOD), limit of quantification (LOQ), and sensitivity of 24 µM, 74 µM, and 1.27 µA cm-2 mM-1, respectively. The response of the proposed sensor in sweat glucose detection and quantification was validated by nuclear magnetic resonance spectroscopy (NMR). Also, the device's capability in attachment to the body, sweat collection, and glucose measurement was demonstrated through in vitro and in vivo experiments, and satisfactory results were obtained.


Subject(s)
Biosensing Techniques , Wearable Electronic Devices , Biosensing Techniques/methods , Blood Glucose/analysis , Blood Glucose Self-Monitoring , Glucose/analysis , Humans , Sweat/chemistry
9.
Biosens Bioelectron ; 197: 113761, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34800926

ABSTRACT

As the tear is noninvasively and continuously available, it has been turned into a convenient biological interface as a wearable medical device for out-of-hospital and self-monitoring applications. Recent progress in integrated circuits (ICs) and biosensors coupled with wireless data communication techniques have led to the implementation of smart contact lenses that can continuously sample tear fluid, analyze physiological conditions, and wirelessly transmit data to an electronic device such as smartphone, which can send data to relevant healthcare units. Continuous analyte monitoring is one of the significant characteristics of wearable biosensors. However, despite several advantages over other on-skin wearable medical devices, batteries cannot be incorporated on smart contact lenses for continuous electrical power supply due to the limited area. Herein, we review the progress of power delivery techniques of smart contact lenses for the first time. Different approaches, including wireless power transmission (WPT), biofuel cells, supercapacitors, flexible batteries, wired connections, and hybrid methods, are thoroughly discussed to understand the principles of self-sustainable contact lens biosensors comprehensively. Additionally, recent progress in contact lens biosensors is reviewed in detail, thereby providing the prospects for further developments of smart contact lenses as a common biosensing platform for various disease monitoring and diagnostic applications.


Subject(s)
Biosensing Techniques , Contact Lenses , Wearable Electronic Devices , Monitoring, Physiologic , Smartphone , Tears
10.
Polymers (Basel) ; 13(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208624

ABSTRACT

Certainly, the success of polythiophenes is due in the first place to their outstanding electronic properties and superior processability. Nevertheless, there are additional reasons that contribute to arouse the scientific interest around these materials. Among these, the large variety of chemical modifications that is possible to perform on the thiophene ring is a precious aspect. In particular, a turning point was marked by the diffusion of synthetic strategies for the preparation of terthiophenes: the vast richness of approaches today available for the easy customization of these structures allows the finetuning of their chemical, physical, and optical properties. Therefore, terthiophene derivatives have become an extremely versatile class of compounds both for direct application or for the preparation of electronic functional polymers. Moreover, their biocompatibility and ease of functionalization make them appealing for biology and medical research, as it testifies to the blossoming of studies in these fields in which they are involved. It is thus with the willingness to guide the reader through all the possibilities offered by these structures that this review elucidates the synthetic methods and describes the full chemical variety of terthiophenes and their derivatives. In the final part, an in-depth presentation of their numerous bioapplications intends to provide a complete picture of the state of the art.

11.
Adv Healthc Mater ; 9(18): e2000790, 2020 09.
Article in English | MEDLINE | ID: mdl-32790033

ABSTRACT

Implantable medical devices (IMDs) are designed to sense specific parameters or stimulate organs and have been actively used for treatment and diagnosis of various diseases. IMDs are used for long-term disease screening or treatments and cannot be considered for short-term applications since patients need to go through a surgery for retrieval of the IMD. Advances in bioresorbable materials has led to the development of transient IMDs that can be resorbed by bodily fluids and disappear after a certain period. These devices are designed to be implanted in the adjacent of the targeted tissue for predetermined times with the aim of measurement of pressure, strain, or temperature, while the bioelectronic devices stimulate certain tissues. They enable opportunities for monitoring and treatment of acute diseases. To realize such transient and miniaturized devices, researchers utilize a variety of materials, novel fabrication methods, and device design strategies. This review discusses potential bioresorbable materials for each component in an IMD followed by programmable degradation and safety standards. Then, common fabrication methods for bioresorbable materials are introduced, along with challenges. The final section provides representative examples of bioresorbable IMDs for various applications with an emphasis on materials, device functionality, and fabrication methods.


Subject(s)
Absorbable Implants , Humans , Temperature
12.
ACS Appl Mater Interfaces ; 12(7): 8695-8703, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-31995987

ABSTRACT

The pursuit for novelty in the field of (bio)electronics demands for new and better-performing (semi)conductive materials. Since the discovery of poly(3,4-ethylenedioxythiophene) (PEDOT), the ubiquitous golden standard, many studies have focused on its applications but only few on its structural modification and/or functionalization. This lack of structural variety strongly limits the versatility of PEDOT, thus hampering the development of novel PEDOT-based materials. In this paper, we present a short and simple strategy for introducing an aldehyde functionality in thiophene-based semiconducting polymers. First, through a two-step synthesis, an EDOT-aldehyde derivative was prepared and polymerized, both chemically and electrochemically. Next, to overcome the inability of thiophene-aldehyde to be polymerized by any means, we synthesized a trimer in which thiophene-aldehyde is enclosed between two EDOT groups. The successful chemical and electrochemical polymerization of this new trimer is presented. The polymer suspensions were characterized by ultraviolet-visible-near-infrared spectroscopy, while the corresponding films were characterized by Fourier transform infrared and four-point-probe conductivity measurements. Afterward, insoluble semiconducting films were formed by using ethylenediamine as a cross-linker, demonstrating in this way the suitability of the aldehyde group for the easy chemical modification of our material. The efficient reactivity conferred by aldehyde groups was also exploited for grafting fluorescent polyamine nanoparticles on the film surface, creating a fluorescent semiconducting polymer film. The films prepared by electropolymerization, as shown by means of a sonication test, exhibit strong surface adhesion on pristine indium tin oxide (ITO). This property paves the way for the application of these polymers as conductive electrodes for interfacing with living organisms. Thanks to the high reactivity of the aldehyde group, the aldehyde-bearing thiophene-based polymers prepared herein are extremely valuable for numerous applications requiring the facile incorporation of a functional group on thiophene, such as the functionalization with labile molecules (thermo-, photo-, and electro-labile, pH sensitive, etc.).

13.
Nanoscale ; 11(23): 11202-11208, 2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31157807

ABSTRACT

The nanoscale aggregate structure of conjugated polymers critically determines the performance of organic thin film optoelectronic devices. Their impact on electronic interface interactions with adjacent layers of graphene, widely reported to improve the device characteristics, yet remains an open issue, which needs to be addressed by an appropriate benchmark system. Here, we prepared discrete ensembles of poly(3-hexylthiophene) nanoparticles and graphene oxide sheets (P3HTNPs-GO) with well-defined aggregate structures of either J- or H-type and imaged their photogenerated charge transfer dynamics across their interface by Kelvin probe force microscopy (KPFM). A distinctive inversion of the sign of the surface potential and surface photovoltage (SPV) demonstrates that J-aggregates are decisive for establishing charge transfer interactions with GO. These enable efficient injection of photogenerated holes from P3HTNPs into GO sheets over a range of tens of nanometers, causing a slow SPV relaxation dynamics, and define their operation as an efficient hole-transport layer (HTL). Conversely, H-type aggregates do not facilitate specific interactions and entrust GO sheets the role of charge-blocking layers (CBLs). The direct effect of the aggregate structure of P3HT on the functional operation of GO as a HTL or CBL thus establishes clear criteria towards the rational design of improved organic optoelectronic devices.

14.
ACS Appl Mater Interfaces ; 11(6): 5947-5956, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30666865

ABSTRACT

Transition-metal dichalcogenides (TMDs) attract increased attention for the development of donor-acceptor materials enabling improved light harvesting and optoelectronic applications. The development of novel donor-acceptor nanoensembles consisting of poly(3-thiophene sodium acetate) and ammonium functionalized MoS2 and WS2 was accomplished, while photoelectrochemical cells were fabricated and examined. Attractive interactions between the negatively charged carboxylate anion on the polythiophene backbone and the positively charged ammonium moieties on the TMDs enabled in a controlled way and in aqueous dispersions the electrostatic association of two species, evidenced upon titration experiments. A progressive quenching of the characteristic fluorescence emission of the polythiophene derivative at 555 nm revealed photoinduced intraensemble energy and/or electron transfer from the polymer to the conduction band of the two TMDs. Photoelectrochemical assays further confirmed the establishment of photoinduced charge-transfer processes in thin films, with distinct responses for the MoS2- and WS2-based systems. The MoS2-based ensemble exhibited enhanced photoanodic currents offering additional channels for hole transfer to the solution, whereas the WS2-based one displayed increased photocathodic currents providing supplementary pathways of electron transfer to the solution. Moreover, scan direction depending on photoanodic and photocathodic currents suggested the existence of yet unexploited photoinduced memory effects. These findings highlight the value of electrostatic interactions for the creation of novel donor-acceptor TMD-based ensembles and their relevance for managing the performance of photoelectrochemical and optoelectronic processes.

15.
ACS Appl Mater Interfaces ; 9(51): 44695-44703, 2017 Dec 27.
Article in English | MEDLINE | ID: mdl-29214807

ABSTRACT

The self-assembly of novel core-shell nanoensembles consisting of regioregular poly(3-hexylthiophene) nanoparticles (P3HTNPs) of 100 nm as core and semiconducting CdTe quantum dots (CdTeQDs) as shell with a thickness of a few tens of nanometers was accomplished by employing a reprecipitation approach. The structure, morphology, and composition of CdTeQDs/P3HTNPs nanoensembles were confirmed by high-resolution scanning transmission microscopy and dynamic light-scattering studies. Intimate interface contact between the CdTeQDs shell and the P3HTNPs core leads to the stabilization of the CdTeQDs/P3HTNPs nanoensemble as probed by the steady-state absorption spectroscopy. Effective quenching of the characteristic photoluminescence of CdTeQDs at 555 nm, accompanied by simultaneous increase in emission of P3HTNPs at 660 and 720 nm, reveals photoinduced charge-transfer processes. Probing the redox properties of films of CdTeQDs/P3HTNPs further proves the formation of a stabilized core-shell system in the solid state. Photoelectrochemical assays on CdTeQDs/P3HTNPs films show a reversible on-off photoresponse at a bias voltage of +0.8 V with a 3 times increased photocurrent compared to CdTeQDs. The improved charge separation is directly related to the unique core-shell configuration, in which the outer CdTeQDs shell forces the P3HTNPs core to effectively act as electron acceptor. The creation of novel donor-acceptor core-shell hybrid materials via self-assembly is transferable to other types of conjugated polymers and semiconducting nanoparticles. This work, therefore, opens new pathways for the design of improved optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...