Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Endocrinol ; 15(4): 575-88, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11266509

ABSTRACT

Aldosterone stimulates Na(+) reabsorption in the collecting ducts by increasing the activity of the epithelial sodium channel, ENaC. Systemic administration of aldosterone increases alpha ENaC mRNA expression in mammalian kidney, suggesting that the alpha ENaC gene is a target for aldosterone action in the distal nephron. To determine whether aldosterone increases alpha ENaC gene transcription, a portion of the alpha ENaC 5'- flanking region coupled to luciferase was transfected into MDCK-C7 cells, a collecting duct cell line with aldosterone-stimulated Na(+) transport. Both dexamethasone and aldosterone stimulated alpha ENaC-coupled reporter gene activity via the glucocorticoid receptor (GR), and this response correlated with the effect of these hormones on endogenous alpha ENaC expression. The aldosterone-stimulated alpha ENaC expression was blocked by actinomycin D, and aldosterone had no effect on alpha ENaC mRNA decay, confirming a transcriptional effect. In HT-29 cells, a GR/mineralocorticoid receptor (MR)-deficient colonic cell line with constitutive alpha ENaC expression, cotransfection with GR or MR restored aldosterone-stimulated alpha ENaC gene transcription, although aldosterone had a functional preference for MR. Analysis of deletion constructs confirmed that a single imperfect glucocorticoid response element (GRE) is necessary and sufficient to confer the aldosterone responsiveness to the alpha ENaC gene promoter in MDCK-C7 and HT-29 cells. These results confirm that alpha ENaC is an aldosterone-induced transcript in the collecting duct and delineates the molecular mechanism for this effect.


Subject(s)
Aldosterone/metabolism , Kidney Tubules, Collecting/physiology , Regulatory Sequences, Nucleic Acid , Sodium Channels/genetics , Transcription, Genetic , Aldosterone/pharmacology , Animals , Base Sequence , Binding Sites , Cells, Cultured , Cloning, Molecular , Dactinomycin/pharmacology , Dexamethasone/pharmacology , Dogs , Epithelial Sodium Channels , Gonanes/pharmacology , Humans , Kidney Tubules, Collecting/cytology , Mice , Mifepristone/pharmacology , Molecular Sequence Data , Promoter Regions, Genetic , Protein Subunits , Receptors, Glucocorticoid/antagonists & inhibitors , Receptors, Glucocorticoid/drug effects , Receptors, Glucocorticoid/metabolism , Receptors, Mineralocorticoid/drug effects , Receptors, Mineralocorticoid/metabolism , Response Elements , Sodium Channels/metabolism
2.
Biochem J ; 347 Pt 1: 105-14, 2000 Apr 01.
Article in English | MEDLINE | ID: mdl-10727408

ABSTRACT

The mRNA for the epithelial Na(+) channel gamma subunit (gammaENaC) is regulated developmentally in the lung, colon and distal nephron and in response to Na(+) deprivation and systemic corticosteroids in the distal colon. Because such regulation is likely to be at the level of gene transcription, we examined the function of the promoter and other 5' flanking elements of the human gammaENaC gene. The proximal 5' flanking region contains two GC boxes but does not contain a TATA box. A 450 bp human gammaENaC fragment (-459 to +40) directed the expression of luciferase in H441 cells and primer extension analysis in transfected cells confirmed the correct initiation of human gammaENaC-luciferase chimaeric transcripts. By deletional analysis, GC boxes at -21 and -52 were found to be critical for this promoter activity. To begin to identify transcription factors that bind to the core promoter, a double-stranded oligonucleotide that corresponded to this region was synthesized and tested in a gel mobility-shift assay. Incubation of this radiolabelled oligonucleotide with nuclear extracts from H441 and FRTL5 cells resulted in the formation of four specific and distinct DNA-protein complexes. On the basis of antibody 'supershift' assays, one of these factors corresponds to Sp1, whereas the other three correspond to Sp3. Further upstream, an approx. 300 nt (-1143 to -839) polypurine-polypyrimidine tract (PPy tract) containing internal mirror repeats was identified. When contained in a supercoiled plasmid, the approx. 1200 nt 5' flanking region was sensitive to S1 endonuclease, which was consistent with the formation of an intramolecular triplex DNA ('H-DNA') structure with an unpaired single strand. High-resolution mapping with S1 endonuclease and sequencing of S1-generated clones confirmed that all S1-sensitive sites were within the PPy tract. Finally, a negative regulatory element was identified between -1525 and -1296 that functioned in lung, colon and collecting duct cell lines.


Subject(s)
5' Untranslated Regions/genetics , DNA/chemistry , DNA/genetics , Promoter Regions, Genetic , Sodium Channels/genetics , Base Sequence , DNA Primers , Epithelial Sodium Channels , Humans , Macromolecular Substances , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , Recombinant Fusion Proteins/biosynthesis , Repetitive Sequences, Nucleic Acid , Restriction Mapping , Sequence Alignment , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...