Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
J Invest Dermatol ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39326662

ABSTRACT

Melanoma represents a critical clinical challenge due to its unfavorable outcomes. This type of skin cancer exhibits unique adaptability to the brain microenvironment, but its underlying molecular mechanisms are poorly understood. Recent findings have suggested that melanoma brain metastases (MBM) may share biological processes similar to those found in various neurodegenerative diseases. To further characterize MBM development, we explore the relationship between the transcriptional profiles of MBM and the neurodegenerative diseases Alzheimer's disease, Parkinson's disease, and multiple sclerosis. We take an in silico approach to unveil a neurodegenerative signature of MBM when compared to melanoma non-brain metastasis (53 dysregulated genes enriched in 11 functional terms, such as associated terms to the extracellular matrix and development) and to non tumor-bearing brain controls (195 dysregulated genes, mostly involved in development and cell differentiation, chromatin remodeling and nucleosome organization, and translation). Two genes, ITGA10 and DNAJC6, emerged as key potential markers being dysregulated in both scenarios. Lastly, we developed an open source, user-friendly web tool (https://bioinfo.cipf.es/metafun-mbm/) that allows interactive exploration of the complete results.

2.
Science ; 385(6712): eadj8691, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39208110

ABSTRACT

Chromosome-containing micronuclei are a hallmark of aggressive cancers. Micronuclei frequently undergo irreversible collapse, exposing their enclosed chromatin to the cytosol. Micronuclear rupture catalyzes chromosomal rearrangements, epigenetic abnormalities, and inflammation, yet mechanisms safeguarding micronuclear integrity are poorly understood. In this study, we found that mitochondria-derived reactive oxygen species (ROS) disrupt micronuclei by promoting a noncanonical function of charged multivesicular body protein 7 (CHMP7), a scaffolding protein for the membrane repair complex known as endosomal sorting complex required for transport III (ESCRT-III). ROS retained CHMP7 in micronuclei while disrupting its interaction with other ESCRT-III components. ROS-induced cysteine oxidation stimulated CHMP7 oligomerization and binding to the nuclear membrane protein LEMD2, disrupting micronuclear envelopes. Furthermore, this ROS-CHMP7 pathological axis engendered chromosome shattering known to result from micronuclear rupture. It also mediated micronuclear disintegrity under hypoxic conditions, linking tumor hypoxia with downstream processes driving cancer progression.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Membrane Proteins , Micronuclei, Chromosome-Defective , Neoplasms , Nuclear Proteins , Oxidative Stress , Humans , Cell Hypoxia , Chromatin/metabolism , Cysteine/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mitochondria/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Nuclear Envelope/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Oxidation-Reduction , Reactive Oxygen Species/metabolism , HeLa Cells
3.
Clin Cancer Res ; 30(19): 4530-4541, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39083415

ABSTRACT

PURPOSE: Sarcoma encompasses a diverse group of cancers that are typically resistant to current therapies, including immune checkpoint blockade (ICB), and underlying mechanisms are poorly understood. The contexture of sarcomas limits generation of high-quality data using cutting-edge molecular profiling methods, such as single-cell RNA-sequencing, thus hampering progress in understanding these understudied cancers. EXPERIMENTAL DESIGN: Here, we demonstrate feasibility of producing multimodal single-cell genomics and whole-genome sequencing data from frozen tissues, profiling 75,716 cell transcriptomes of five undifferentiated pleomorphic sarcoma and three intimal sarcoma samples, including paired specimens from two patients treated with ICB. RESULTS: We find that genomic diversity decreases in patients with response to ICB, and, in unbiased analyses, identify cancer cell programs associated with therapy resistance. Although interactions of tumor-infiltrating T lymphocytes within the tumor ecosystem increase in ICB responders, clonal expansion of CD8+ T cells alone was insufficient to predict drug responses. CONCLUSIONS: This study provides a framework for studying rare tumors and identifies salient and treatment-associated cancer cell intrinsic and tumor microenvironmental features in sarcomas.


Subject(s)
Drug Resistance, Neoplasm , Immune Checkpoint Inhibitors , Sarcoma , Single-Cell Analysis , Humans , Sarcoma/genetics , Sarcoma/drug therapy , Sarcoma/pathology , Sarcoma/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Single-Cell Analysis/methods , Drug Resistance, Neoplasm/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Tumor Microenvironment/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Female , Gene Expression Profiling , Male , Transcriptome , Biomarkers, Tumor/genetics , Middle Aged , Whole Genome Sequencing
4.
Cells ; 13(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38995006

ABSTRACT

Immunotherapies have shown significant promise as an impactful strategy in cancer treatment. However, in glioblastoma multiforme (GBM), the most prevalent primary brain tumor in adults, these therapies have demonstrated lower efficacy than initially anticipated. Consequently, there is an urgent need for strategies to enhance the effectiveness of immune treatments. AURKA has been identified as a potential drug target for GBM treatment. An analysis of the GBM cell transcriptome following AURKA inhibition revealed a potential influence on the immune system. Our research revealed that AURKA influenced PD-L1 levels in various GBM model systems in vitro and in vivo. Disrupting AURKA function genetically led to reduced PD-L1 levels and increased MHC-I expression in both established and patient-derived xenograft GBM cultures. This process involved both transcriptional and non-transcriptional pathways, partly implicating GSK3ß. Interfering with AURKA also enhanced NK-cell-mediated elimination of GBM by reducing PD-L1 expression, as evidenced in rescue experiments. Furthermore, using a mouse model that mimics GBM with patient-derived cells demonstrated that Alisertib decreased PD-L1 expression in living organisms. Combination therapy involving anti-PD-1 treatment and Alisertib significantly prolonged overall survival compared to vehicle treatment. These findings suggest that targeting AURKA could have therapeutic implications for modulating the immune environment within GBM cells.


Subject(s)
Aurora Kinase A , B7-H1 Antigen , Glioblastoma , Killer Cells, Natural , Aurora Kinase A/metabolism , Aurora Kinase A/antagonists & inhibitors , Humans , Glioblastoma/pathology , Glioblastoma/drug therapy , Glioblastoma/immunology , Glioblastoma/genetics , B7-H1 Antigen/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Animals , Mice , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Azepines/pharmacology , Pyrimidines/pharmacology , Cytotoxicity, Immunologic/drug effects , Brain Neoplasms/pathology , Brain Neoplasms/immunology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic/drug effects , Xenograft Model Antitumor Assays
5.
bioRxiv ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38854106

ABSTRACT

Chromosomal instability (CIN) is a hallmark of cancer that drives metastasis, immune evasion and treatment resistance. CIN results from chromosome mis-segregation events during anaphase, as excessive chromatin is packaged in micronuclei (MN), that can be enumerated to quantify CIN. Despite recent advancements in automation through computer vision and machine learning, the assessment of CIN remains a predominantly manual and time-consuming task, thus hampering important work in the field. Here, we present micronuclAI , a novel pipeline for automated and reliable quantification of MN of varying size, morphology and location from DNA-only stained images. In micronucleAI , single-cell crops are extracted from high-resolution microscopy images with the help of segmentation masks, which are then used to train a convolutional neural network (CNN) to output the number of MN associated with each cell. The pipeline was evaluated against manual single-cell level counts by experts and against routinely used MN ratio within the complete image. The classifier was able to achieve a weighted F1 score of 0.937 on the test dataset and the complete pipeline can achieve close to human-level performance on various datasets derived from multiple human and murine cancer cell lines. The pipeline achieved a root-mean-square deviation (RMSE) value of 0.0041, an R 2 of 0.87 and a Pearson's correlation of 0.938 on images obtained at 10X magnification. We tested the approach in otherwise isogenic cell lines in which we genetically dialed up or down CIN rates, and also on a publicly available image data set (obtained at 100X) and achieved an RMSE value of 0.0159, an R 2 of 0.90, and a Pearson's correlation of 0.951. Given the increasing interest in developing therapies for CIN-driven cancers, this method provides an important, scalable, and rapid approach to quantifying CIN on routinely obtained images. We release a GUI-implementation for easy access and utilization of the pipeline.

6.
Nat Biotechnol ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783148

ABSTRACT

Single-nucleotide variants (SNVs) in key T cell genes can drive clinical pathologies and could be repurposed to improve cellular cancer immunotherapies. Here, we perform massively parallel base-editing screens to generate thousands of variants at gene loci annotated with known or potential clinical relevance. We discover a broad landscape of putative gain-of-function (GOF) and loss-of-function (LOF) mutations, including in PIK3CD and the gene encoding its regulatory subunit, PIK3R1, LCK, SOS1, AKT1 and RHOA. Base editing of PIK3CD and PIK3R1 variants in T cells with an engineered T cell receptor specific to a melanoma epitope or in different generations of CD19 chimeric antigen receptor (CAR) T cells demonstrates that discovered GOF variants, but not LOF or silent mutation controls, enhanced signaling, cytokine production and lysis of cognate melanoma and leukemia cell models, respectively. Additionally, we show that generations of CD19 CAR T cells engineered with PIK3CD GOF mutations demonstrate enhanced antigen-specific signaling, cytokine production and leukemia cell killing, including when benchmarked against other recent strategies.

7.
Melanoma Res ; 34(4): 382-385, 2024 08 01.
Article in English | MEDLINE | ID: mdl-38640504

ABSTRACT

Pseudoprogression encapsulates a process of temporary radiographic growth followed by subsequent regression of metastatic melanoma lesions in response to immune checkpoint blockade (ICB), such as the combination of anti-programmed cell death protein 1 (PD-1) and anticytotoxic T-lymphocyte-associated antigen 4 therapy. This occurs in approximately 5-10% of ICB-treated patients, but has not yet been described in the context of novel combination therapies. Here, we report a case of an 89-year-old patient with metastatic melanoma to the liver, lung and lymph nodes, who underwent treatment with Opdualag (combining anti-PD-1 nivolumab and anti-lymphocyte-activation gene 3 relatlimab ICBs), and developed pseudoprogression after two cycles of therapy. The patient experienced a radiographic increase in liver metastatic lesion size, but was found to have a subsequent reduction in these lesions. The patient has been on therapy for 18 months without evidence of disease progression and continues to be clinically well-appearing.


Subject(s)
Melanoma , Programmed Cell Death 1 Receptor , Skin Neoplasms , Humans , Melanoma/drug therapy , Melanoma/pathology , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Aged, 80 and over , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Lymphocyte Activation Gene 3 Protein , Disease Progression , Male , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Nivolumab/therapeutic use , Nivolumab/pharmacology , Antigens, CD/metabolism
8.
Cell ; 187(4): 861-881.e32, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38301646

ABSTRACT

Genomic instability can trigger cancer-intrinsic innate immune responses that promote tumor rejection. However, cancer cells often evade these responses by overexpressing immune checkpoint regulators, such as PD-L1. Here, we identify the SNF2-family DNA translocase SMARCAL1 as a factor that favors tumor immune evasion by a dual mechanism involving both the suppression of innate immune signaling and the induction of PD-L1-mediated immune checkpoint responses. Mechanistically, SMARCAL1 limits endogenous DNA damage, thereby suppressing cGAS-STING-dependent signaling during cancer cell growth. Simultaneously, it cooperates with the AP-1 family member JUN to maintain chromatin accessibility at a PD-L1 transcriptional regulatory element, thereby promoting PD-L1 expression in cancer cells. SMARCAL1 loss hinders the ability of tumor cells to induce PD-L1 in response to genomic instability, enhances anti-tumor immune responses and sensitizes tumors to immune checkpoint blockade in a mouse melanoma model. Collectively, these studies uncover SMARCAL1 as a promising target for cancer immunotherapy.


Subject(s)
B7-H1 Antigen , DNA Helicases , Immunity, Innate , Melanoma , Tumor Escape , Animals , Mice , B7-H1 Antigen/metabolism , Genomic Instability , Melanoma/immunology , Melanoma/metabolism , DNA Helicases/metabolism
9.
Nat Cancer ; 5(2): 262-282, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38195932

ABSTRACT

The contribution of antitumor immunity to metastatic dormancy is poorly understood. Here we show that the long noncoding RNA Malat1 is required for tumor initiation and metastatic reactivation in mouse models of breast cancer and other tumor types. Malat1 localizes to nuclear speckles to couple transcription, splicing and mRNA maturation. In metastatic cells, Malat1 induces WNT ligands, autocrine loops to promote self-renewal and the expression of Serpin protease inhibitors. Through inhibition of caspase-1 and cathepsin G, SERPINB6B prevents gasdermin D-mediated induction of pyroptosis. In this way, SERPINB6B suppresses immunogenic cell death and confers evasion of T cell-mediated tumor lysis of incipient metastatic cells. On-target inhibition of Malat1 using therapeutic antisense nucleotides suppresses metastasis in a SERPINB6B-dependent manner. These results suggest that Malat1-induced expression of SERPINB6B can titrate pyroptosis and immune recognition at metastatic sites. Thus, Malat1 is at the nexus of tumor initiation, reactivation and immune evasion and represents a tractable and clinically relevant drug target.


Subject(s)
RNA, Long Noncoding , Animals , Mice , Cell Line, Tumor , Pyroptosis , RNA Splicing , RNA, Long Noncoding/genetics , T-Lymphocytes/metabolism
10.
Nat Cancer ; 5(3): 433-447, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286827

ABSTRACT

Liver metastasis (LM) confers poor survival and therapy resistance across cancer types, but the mechanisms of liver-metastatic organotropism remain unknown. Here, through in vivo CRISPR-Cas9 screens, we found that Pip4k2c loss conferred LM but had no impact on lung metastasis or primary tumor growth. Pip4k2c-deficient cells were hypersensitized to insulin-mediated PI3K/AKT signaling and exploited the insulin-rich liver milieu for organ-specific metastasis. We observed concordant changes in PIP4K2C expression and distinct metabolic changes in 3,511 patient melanomas, including primary tumors, LMs and lung metastases. We found that systemic PI3K inhibition exacerbated LM burden in mice injected with Pip4k2c-deficient cancer cells through host-mediated increase in hepatic insulin levels; however, this circuit could be broken by concurrent administration of an SGLT2 inhibitor or feeding of a ketogenic diet. Thus, this work demonstrates a rare example of metastatic organotropism through co-optation of physiological metabolic cues and proposes therapeutic avenues to counteract these mechanisms.


Subject(s)
Liver Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases , Signal Transduction , Insulin , Phosphotransferases (Alcohol Group Acceptor)/metabolism
12.
Genes Immun ; 25(1): 82-84, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38082156

ABSTRACT

Immune evasion is a hallmark of cancer, yet the underlying mechanisms are often unknown in many patients. Using single-cell transcriptomics analysis, we previously identified the co-stimulator CD58 as part of a cancer cell-intrinsic immune checkpoint resistance signature in patient melanoma tissue. We subsequently validated CD58 loss as a driver of immune evasion using a patient-derived co-culture model of cancer and cytotoxic tumor-infiltrating lymphocytes in a pooled single-cell perturbation experiment, where we additionally observed concurrent upregulation of PD-L1 protein expression in melanoma cells with CD58 loss. In our most recent study, we uncovered the mechanisms of immune evasion mediated by CD58 loss, including impaired T cell activation and infiltration within tumors, as well as inhibitory signaling by PD-L1 via a shared regulator, CMTM6. Thus, cancer cell-intrinsic reduction of CD58 represents a multi-faceted determinant of immune evasion. Furthermore, its reciprocal interaction with PD-L1 via CMTM6 provides critical insights into how co-inhibitory and co-stimulatory immune cues are regulated.


Subject(s)
B7-H1 Antigen , Melanoma , Humans , B7-H1 Antigen/genetics , Melanoma/genetics , Immune Evasion , Cell Line, Tumor , Signal Transduction
13.
Nat Commun ; 14(1): 8435, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114518

ABSTRACT

We previously reported the results of a randomized phase II trial (NCT02904954) in patients with early-stage non-small cell lung cancer (NSCLC) who were treated with either two preoperative cycles of the anti-PD-L1 antibody durvalumab alone or combined with immunomodulatory doses of stereotactic radiation (DRT). The trial met its primary endpoint of major pathological response, which was significantly higher following DRT with no new safety signals. Here, we report on the prespecified secondary endpoint of disease-free survival (DFS) regardless of treatment assignment and the prespecified exploratory analysis of DFS in each arm of the trial. DFS at 2 and 3 years across patients in both arms of the trial were 73% (95% CI: 62.1-84.5) and 65% (95% CI: 52.5-76.9) respectively. For the exploratory endpoint of DFS in each arm of the trial, three-year DFS was 63% (95% CI: 46.0-80.4) in the durvalumab monotherapy arm compared to 67% (95% CI: 49.6-83.4) in the dual therapy arm. In addition, we report post hoc exploratory analysis of progression-free survival as well as molecular correlates of response and recurrence through high-plex immunophenotyping of sequentially collected peripheral blood and gene expression profiles from resected tumors in both treatment arms. Together, our results contribute to the evolving landscape of neoadjuvant treatment regimens for NSCLC and identify easily measurable potential biomarkers of response and recurrence.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Antibodies, Monoclonal/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Neoadjuvant Therapy , Small Cell Lung Carcinoma/drug therapy , Randomized Controlled Trials as Topic , Clinical Trials, Phase II as Topic
14.
Genome Biol ; 24(1): 291, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110959

ABSTRACT

Spatial omics technologies can help identify spatially organized biological processes, but existing computational approaches often overlook structural dependencies in the data. Here, we introduce Smoother, a unified framework that integrates positional information into non-spatial models via modular priors and losses. In simulated and real datasets, Smoother enables accurate data imputation, cell-type deconvolution, and dimensionality reduction with remarkable efficiency. In colorectal cancer, Smoother-guided deconvolution reveals plasma cell and fibroblast subtype localizations linked to tumor microenvironment restructuring. Additionally, joint modeling of spatial and single-cell human prostate data with Smoother allows for spatial mapping of reference populations with significantly reduced ambiguity.


Subject(s)
Fibroblasts , Prostate , Humans , Male , Tumor Microenvironment
15.
NPJ Precis Oncol ; 7(1): 120, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964004

ABSTRACT

Melanoma brain metastases (MBM) are clinically challenging to treat and exhibit variable responses to immune checkpoint therapies. Prior research suggests that MBM exhibit poor tumor immune responses and are enriched in oxidative phosphorylation. Here, we report results from a multi-omic analysis of a large, real-world melanoma cohort. MBM exhibited lower interferon-gamma (IFNγ) scores and T cell-inflamed scores compared to primary cutaneous melanoma (PCM) or extracranial metastases (ECM), which was independent of tumor mutational burden. Among MBM, there were fewer computationally inferred immune cell infiltrates, which correlated with lower TNF and IL12B mRNA levels. Ingenuity pathway analysis (IPA) revealed suppression of inflammatory responses and dendritic cell maturation pathways. MBM also demonstrated a higher frequency of pathogenic PTEN mutations and angiogenic signaling. Oxidative phosphorylation (OXPHOS) was enriched in MBM and negatively correlated with NK cell and B cell-associated transcriptomic signatures. Modulating metabolic or angiogenic pathways in MBM may improve responses to immunotherapy in this difficult-to-treat patient subset.

16.
J Immunother Cancer ; 11(10)2023 10.
Article in English | MEDLINE | ID: mdl-37852736

ABSTRACT

Since the first approval for immune checkpoint inhibitors (ICIs) for the treatment of cutaneous melanoma more than a decade ago, immunotherapy has completely transformed the treatment landscape of this chemotherapy-resistant disease. Combination regimens including ICIs directed against programmed cell death protein 1 (PD-1) with anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) agents or, more recently, anti-lymphocyte-activation gene 3 (LAG-3) agents, have gained regulatory approvals for the treatment of metastatic cutaneous melanoma, with long-term follow-up data suggesting the possibility of cure for some patients with advanced disease. In the resectable setting, adjuvant ICIs prolong recurrence-free survival, and neoadjuvant strategies are an active area of investigation. Other immunotherapy strategies, such as oncolytic virotherapy for injectable cutaneous melanoma and bispecific T-cell engager therapy for HLA-A*02:01 genotype-positive uveal melanoma, are also available to patients. Despite the remarkable efficacy of these regimens for many patients with cutaneous melanoma, traditional immunotherapy biomarkers (ie, programmed death-ligand 1 expression, tumor mutational burden, T-cell infiltrate and/or microsatellite stability) have failed to reliably predict response. Furthermore, ICIs are associated with unique toxicity profiles, particularly for the highly active combination of anti-PD-1 plus anti-CTLA-4 agents. The Society for Immunotherapy of Cancer (SITC) convened a panel of experts to develop this clinical practice guideline on immunotherapy for the treatment of melanoma, including rare subtypes of the disease (eg, uveal, mucosal), with the goal of improving patient care by providing guidance to the oncology community. Drawing from published data and clinical experience, the Expert Panel developed evidence- and consensus-based recommendations for healthcare professionals using immunotherapy to treat melanoma, with topics including therapy selection in the advanced and perioperative settings, intratumoral immunotherapy, when to use immunotherapy for patients with BRAFV600-mutated disease, management of patients with brain metastases, evaluation of treatment response, special patient populations, patient education, quality of life, and survivorship, among others.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/drug therapy , Quality of Life , Immunotherapy , Melanoma, Cutaneous Malignant
17.
Pigment Cell Melanoma Res ; 36(6): 542-556, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37804122

ABSTRACT

Mucosal melanoma remains a rare cancer with high mortality and a paucity of therapeutic options. This is due in significant part to its low incidence leading to limited patient access to expert care and downstream clinical/basic science data for research interrogation. Clinical challenges such as delayed and at times inaccurate diagnoses, and lack of consensus tumor staging have added to the suboptimal outcomes for these patients. Clinical trials, while promising, have been difficult to activate and accrue. While individual institutions and investigators have attempted to seek solutions to such problems, international, national, and local partnership may provide the keys to more efficient and innovative paths forward. Furthermore, a mucosal melanoma coalition would provide a potential network for patients and caregivers to seek expert opinion and advice. The Melanoma Research Foundation Mucosal Melanoma Meeting (December 16, 2022, New York, USA) highlighted the current clinical challenges faced by patients, providers, and scientists, identified current and future clinical trial investigations in this rare disease space, and aimed to increase national and international collaboration among the mucosal melanoma community in an effort to improve patient outcomes. The included proceedings highlight the clinical challenges of mucosal melanoma, global clinical trial experience, basic science advances in mucosal melanoma, and future directions, including the creation of shared rare tumor registries and enhanced collaborations.


Subject(s)
Melanoma , Humans , New York , Melanoma/therapy , Melanoma/pathology , Mucous Membrane/pathology , Combined Modality Therapy , Neoplasm Staging
18.
J. immunotherap. cancer ; 11(10): 1-39, 20231001. tab
Article in English | BIGG - GRADE guidelines | ID: biblio-1525933

ABSTRACT

Since the first approval for immune checkpoint inhibitors (ICIs) for the treatment of cutaneous melanoma more than a decade ago, immunotherapy has completely transformed the treatment landscape of this chemotherapy-resistant disease. Combination regimens including ICIs directed against programmed cell death protein 1 (PD-1) with anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) agents or, more recently, anti-lymphocyte-activation gene 3 (LAG-3) agents, have gained regulatory approvals for the treatment of metastatic cutaneous melanoma, with long-term follow-up data suggesting the possibility of cure for some patients with advanced disease. In the resectable setting, adjuvant ICIs prolong recurrence-free survival, and neoadjuvant strategies are an active area of investigation. Other immunotherapy strategies, such as oncolytic virotherapy for injectable cutaneous melanoma and bispecific T-cell engager therapy for HLA-A*02:01 genotype-positive uveal melanoma, are also available to patients. Despite the remarkable efficacy of these regimens for many patients with cutaneous melanoma, traditional immunotherapy biomarkers (ie, programmed death-ligand 1 expression, tumor mutational burden, T-cell infiltrate and/or microsatellite stability) have failed to reliably predict response. Furthermore, ICIs are associated with unique toxicity profiles, particularly for the highly active combination of anti-PD-1 plus anti-CTLA-4 agents. The Society for Immunotherapy of Cancer (SITC) convened a panel of experts to develop this clinical practice guideline on immunotherapy for the treatment of melanoma, including rare subtypes of the disease (eg, uveal, mucosal), with the goal of improving patient care by providing guidance to the oncology community. Drawing from published data and clinical experience, the Expert Panel developed evidence- and consensus-based recommendations for healthcare professionals using immunotherapy to treat melanoma, with topics including therapy selection in the advanced and perioperative settings, intratumoral immunotherapy, when to use immunotherapy for patients with BRAFV600- mutated disease, management of patients with brain metastases, evaluation of treatment response, special patient populations, patient education, quality of life, and survivorship, among others.


Subject(s)
Humans , Immunotherapy/standards , Melanoma/immunology , Antineoplastic Agents, Immunological/therapeutic use
19.
Nat Cancer ; 4(10): 1401-1402, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37770653
20.
J Immunother Cancer ; 11(9)2023 09.
Article in English | MEDLINE | ID: mdl-37657842

ABSTRACT

Current methods for biomarker discovery and target identification in immuno-oncology rely on static snapshots of tumor immunity. To thoroughly characterize the temporal nature of antitumor immune responses, we developed a 34-parameter spectral flow cytometry panel and performed high-throughput analyses in critical contexts. We leveraged two distinct preclinical models that recapitulate cancer immunoediting (NPK-C1) and immune checkpoint blockade (ICB) response (MC38), respectively, and profiled multiple relevant tissues at and around key inflection points of immune surveillance and escape and/or ICB response. Machine learning-driven data analysis revealed a pattern of KLRG1 expression that uniquely identified intratumoral effector CD4 T cell populations that constitutively associate with tumor burden across tumor models, and are lost in tumors undergoing regression in response to ICB. Similarly, a Helios-KLRG1+ subset of tumor-infiltrating regulatory T cells was associated with tumor progression from immune equilibrium to escape and was also lost in tumors responding to ICB. Validation studies confirmed KLRG1 signatures in human tumor-infiltrating CD4 T cells associate with disease progression in renal cancer. These findings nominate KLRG1+ CD4 T cell populations as subsets for further investigation in cancer immunity and demonstrate the utility of longitudinal spectral flow profiling as an engine of dynamic biomarker discovery.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , CD4-Positive T-Lymphocytes , T-Lymphocyte Subsets , Immunotherapy , Biomarkers , Receptors, Immunologic , Lectins, C-Type
SELECTION OF CITATIONS
SEARCH DETAIL