Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 10(10)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34681055

ABSTRACT

The pathway of selective autophagy, leading to a targeted elimination of specific intracellular components, is mediated by the ATG8 proteins, and has been previously suggested to be involved in the regulation of the Epithelial-mesenchymal transition (EMT) during cancer's etiology. However, the molecular factors and steps of selective autophagy occurring during EMT remain unclear. We therefore analyzed a cohort of lung adenocarcinoma tumors using transcriptome analysis and immunohistochemistry, and found that the expression of ATG8 genes is correlated with that of EMT-related genes, and that GABARAPL1 protein levels are increased in EMT+ tumors compared to EMT- ones. Similarly, the induction of EMT in the A549 lung adenocarcinoma cell line using TGF-ß/TNF-α led to a high increase in GABARAPL1 expression mediated by the EMT-related transcription factors of the SMAD family, whereas the other ATG8 genes were less modified. To determine the role of GABARAPL1 during EMT, we used the CRISPR/Cas9 technology in A549 and ACHN kidney adenocarcinoma cell lines to deplete GABARAPL1. We then observed that GABARAPL1 knockout induced EMT linked to a defect of GABARAPL1-mediated degradation of the SMAD proteins. These findings suggest that, during EMT, GABARAPL1 might intervene in an EMT-regulatory loop. Indeed, induction of EMT led to an increase in GABARAPL1 levels through the activation of the SMAD signaling pathway, and then GABARAPL1 induced the autophagy-selective degradation of SMAD proteins, leading to EMT inhibition.

2.
Autophagy ; 17(3): 599-611, 2021 03.
Article in English | MEDLINE | ID: mdl-32255730

ABSTRACT

The Atg8-family proteins are subdivided into two subfamilies: the GABARAP and LC3 subfamilies. These proteins, which are major players of the autophagy pathway, present a conserved glycine in their C-terminus necessary for their association to the autophagosome membrane. This family of proteins present multiple roles from autophagy induction to autophagosome-lysosome fusion and have been described to play a role during cancer progression. Indeed, GABARAPs are described to be downregulated in cancers, and high expression has been linked to a good prognosis. Regarding LC3 s, their expression does not correlate to a particular tumor type or stage. The involvement of Atg8-family proteins during cancer, therefore, remains unclear, and it appears that their anti-tumor role may be associated with their implication in selective protein degradation by autophagy but might also be independent, in some cases, of their conjugation to autophagosomes. In this review, we will then focus on the involvement of GABARAP and LC3 subfamilies during autophagy and cancer and highlight the similarities but also the differences of action of each subfamily member.Abbreviations: AIM: Atg8-interacting motif; AMPK: adenosine monophosphate-associated protein kinase; ATG: autophagy-related; BECN1: beclin 1; BIRC6/BRUCE: baculoviral IAP repeat containing 6; BNIP3L/NIX: BCL2 interacting protein 3 like; GABARAP: GABA type A receptor-associated protein; GABARAPL1/2: GABA type A receptor associated protein like 1/2; GABRA/GABAA: gamma-aminobutyric acid type A receptor subunit; LAP: LC3-associated phagocytosis; LMNB1: lamin B1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PI4K2A/PI4KIIα: phosphatidylinositol 4-kinase type 2 alpha; PLEKHM1: plecktrin homology and RUN domain containing M1; PtdIns3K-C1: class III phosphatidylinositol 3-kinase complex 1; SQSTM1: sequestosome 1; ULK1: unc51-like autophagy activating kinase 1.


Subject(s)
Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Proteins/metabolism , Autophagy/physiology , Neoplasms/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Autophagosomes/metabolism , Humans
4.
Oncotarget ; 8(34): 55998-56020, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28915569

ABSTRACT

The GABARAPL1 protein belongs to the ATG8 family whose members are involved in autophagy. Our laboratory previously demonstrated that GABARAPL1 associates with autophagic vesicles, regulates autophagic flux and acts as a tumor suppressor protein in breast cancer. In this study, we aimed to determine whether GABARAPL1 conjugation to autophagosomes is necessary for its tumor suppressive functions using the MCF-7 breast cancer cell line overexpressing GABARAPL1 or a G116A mutant, which is unable to be lipidated and associated to autophagosomes. We show that the G116A mutation impaired GABARAPL1 function in autophagosome/lysosome fusion and inhibited lysosome activity but did not alter MTOR and ULK1 activities or tumor growth in vivo. Our results demonstrate for the first time that GABARAPL1 plays different regulatory functions during early and late stages of autophagy, independently or not of its conjugation to autophagosomes, but its tumor suppressive function appeared to be independent of its conjugation to autophagic vesicles.

SELECTION OF CITATIONS
SEARCH DETAIL
...