Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 4(6): 1131-1144, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32208489

ABSTRACT

First reported in 1999, germline runt-related transcription factor 1 (RUNX1) mutations are a well-established cause of familial platelet disorder with predisposition to myeloid malignancy (FPD-MM). We present the clinical phenotypes and genetic mutations detected in 10 novel RUNX1-mutated FPD-MM families. Genomic analyses on these families detected 2 partial gene deletions, 3 novel mutations, and 5 recurrent mutations as the germline RUNX1 alterations leading to FPD-MM. Combining genomic data from the families reported herein with aggregated published data sets resulted in 130 germline RUNX1 families, which allowed us to investigate whether specific germline mutation characteristics (type, location) could explain the large phenotypic heterogeneity between patients with familial platelet disorder and different HMs. Comparing the somatic mutational signatures between the available familial (n = 35) and published sporadic (n = 137) RUNX1-mutated AML patients showed enrichment for somatic mutations affecting the second RUNX1 allele and GATA2. Conversely, we observed a decreased number of somatic mutations affecting NRAS, SRSF2, and DNMT3A and the collective genes associated with CHIP and epigenetic regulation. This is the largest aggregation and analysis of germline RUNX1 mutations performed to date, providing a unique opportunity to examine the factors underlying phenotypic differences and disease progression from FPD to MM.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Leukemia, Myeloid, Acute , Core Binding Factor Alpha 2 Subunit/genetics , Epigenesis, Genetic , Germ Cells , Humans , Leukemia, Myeloid, Acute/genetics , Mutation , Pedigree , Phenotype
2.
Blood ; 127(8): 1017-23, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26712909

ABSTRACT

Recently our group and others have identified DDX41 mutations both as germ line and acquired somatic mutations in families with multiple cases of late onset myelodysplastic syndrome (MDS) and/or acute myeloid leukemia (AML), suggesting that DDX41 acts as a tumor suppressor. To determine whether novel DDX41 mutations could be identified in families with additional types of hematologic malignancies, our group screened two cohorts of families with a diverse range of hematologic malignancy subtypes. Among 289 families, we identified nine (3%) with DDX41 mutations. As previously observed, MDS and AML were the most common malignancies, often of the erythroblastic subtype, and 1 family displayed early-onset follicular lymphoma. Five novel mutations were identified, including missense mutations within important functional domains and start-loss and splicing mutations predicted to result in truncated proteins. We also show that most asymptomatic mutation carriers have normal blood counts until malignancy develops. This study expands both the mutation and phenotypic spectra observed in families with germ line DDX41 mutations. With an increasing number of both inherited and acquired mutations in this gene being identified, further study of how DDX41 disruption leads to hematologic malignancies is critical.


Subject(s)
DEAD-box RNA Helicases/genetics , Germ-Line Mutation , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , Age of Onset , Aged , Aged, 80 and over , DNA Mutational Analysis , Female , Fluorescent Antibody Technique , Genetic Predisposition to Disease/genetics , Genotype , Humans , Male , Middle Aged , Pedigree , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...