Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 43(2): 732-44, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25572316

ABSTRACT

The possibility that alterations in DNA methylation are mechanistic drivers of development, aging and susceptibility to disease is widely acknowledged, but evidence remains patchy or inconclusive. Of particular interest in this regard is the brain, where it has been reported that DNA methylation impacts on neuronal activity, learning and memory, drug addiction and neurodegeneration. Until recently, however, little was known about the 'landscape' of the human brain methylome. Here we assay 1.9 million CpGs in each of 43 brain samples representing different individuals and brain regions. The cerebellum was a consistent outlier compared to all other regions, and showed over 16 000 differentially methylated regions (DMRs). Unexpectedly, the sequence characteristics of hypo- and hypermethylated domains in cerebellum were distinct. In contrast, very few DMRs distinguished regions of the cortex, limbic system and brain stem. Inter-individual DMRs were readily detectable in these regions. These results lead to the surprising conclusion that, with the exception of cerebellum, DNA methylation patterns are more homogeneous between different brain regions from the same individual, than they are for a single brain region between different individuals. This finding suggests that DNA sequence composition, not developmental status, is the principal determinant of the human brain DNA methylome.


Subject(s)
Brain/metabolism , DNA Methylation , Base Sequence , Cerebellum/metabolism , CpG Islands , DNA/chemistry , Humans
2.
PLoS Genet ; 6(9): e1001134, 2010 Sep 23.
Article in English | MEDLINE | ID: mdl-20885785

ABSTRACT

CpG islands (CGIs) are vertebrate genomic landmarks that encompass the promoters of most genes and often lack DNA methylation. Querying their apparent importance, the number of CGIs is reported to vary widely in different species and many do not co-localise with annotated promoters. We set out to quantify the number of CGIs in mouse and human genomes using CXXC Affinity Purification plus deep sequencing (CAP-seq). We also asked whether CGIs not associated with annotated transcripts share properties with those at known promoters. We found that, contrary to previous estimates, CGI abundance in humans and mice is very similar and many are at conserved locations relative to genes. In each species CpG density correlates positively with the degree of H3K4 trimethylation, supporting the hypothesis that these two properties are mechanistically interdependent. Approximately half of mammalian CGIs (>10,000) are "orphans" that are not associated with annotated promoters. Many orphan CGIs show evidence of transcriptional initiation and dynamic expression during development. Unlike CGIs at known promoters, orphan CGIs are frequently subject to DNA methylation during development, and this is accompanied by loss of their active promoter features. In colorectal tumors, however, orphan CGIs are not preferentially methylated, suggesting that cancer does not recapitulate a developmental program. Human and mouse genomes have similar numbers of CGIs, over half of which are remote from known promoters. Orphan CGIs nevertheless have the characteristics of functional promoters, though they are much more likely than promoter CGIs to become methylated during development and hence lose these properties. The data indicate that orphan CGIs correspond to previously undetected promoters whose transcriptional activity may play a functional role during development.


Subject(s)
Conserved Sequence/genetics , CpG Islands/genetics , Genome/genetics , Mammals/genetics , Promoter Regions, Genetic , Adult , Animals , Base Sequence , Chromatography, Affinity , Colorectal Neoplasms/genetics , DNA Methylation/genetics , Female , Histones/metabolism , Humans , Lysine/metabolism , Male , Mice , Middle Aged , Organ Specificity/genetics , Sequence Analysis, DNA , Transcription, Genetic , Young Adult
3.
Nature ; 464(7291): 1082-6, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20393567

ABSTRACT

CpG islands (CGIs) are prominent in the mammalian genome owing to their GC-rich base composition and high density of CpG dinucleotides. Most human gene promoters are embedded within CGIs that lack DNA methylation and coincide with sites of histone H3 lysine 4 trimethylation (H3K4me3), irrespective of transcriptional activity. In spite of these intriguing correlations, the functional significance of non-methylated CGI sequences with respect to chromatin structure and transcription is unknown. By performing a search for proteins that are common to all CGIs, here we show high enrichment for Cfp1, which selectively binds to non-methylated CpGs in vitro. Chromatin immunoprecipitation of a mono-allelically methylated CGI confirmed that Cfp1 specifically associates with non-methylated CpG sites in vivo. High throughput sequencing of Cfp1-bound chromatin identified a notable concordance with non-methylated CGIs and sites of H3K4me3 in the mouse brain. Levels of H3K4me3 at CGIs were markedly reduced in Cfp1-depleted cells, consistent with the finding that Cfp1 associates with the H3K4 methyltransferase Setd1 (refs 7, 8). To test whether non-methylated CpG-dense sequences are sufficient to establish domains of H3K4me3, we analysed artificial CpG clusters that were integrated into the mouse genome. Despite the absence of promoters, the insertions recruited Cfp1 and created new peaks of H3K4me3. The data indicate that a primary function of non-methylated CGIs is to genetically influence the local chromatin modification state by interaction with Cfp1 and perhaps other CpG-binding proteins.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin/genetics , Chromatin/metabolism , CpG Islands/genetics , Trans-Activators/metabolism , Alleles , Animals , Brain/cytology , Cell Line , Chromatin Immunoprecipitation , DNA Methylation , Genome/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/chemistry , Histones/metabolism , Methylation , Mice , NIH 3T3 Cells , Promoter Regions, Genetic , Trans-Activators/chemistry , Trans-Activators/deficiency , Trans-Activators/genetics , Zinc Fingers
4.
Mol Cell ; 37(4): 457-68, 2010 Feb 26.
Article in English | MEDLINE | ID: mdl-20188665

ABSTRACT

MeCP2 is a nuclear protein with an affinity for methylated DNA that can recruit histone deacetylases. Deficiency or excess of MeCP2 causes severe neurological problems, suggesting that the number of molecules per cell must be precisely regulated. We quantified MeCP2 in neuronal nuclei and found that it is nearly as abundant as the histone octamer. Despite this high abundance, MeCP2 associates preferentially with methylated regions, and high-throughput sequencing showed that its genome-wide binding tracks methyl-CpG density. MeCP2 deficiency results in global changes in neuronal chromatin structure, including elevated histone acetylation and a doubling of histone H1. Neither change is detectable in glia, where MeCP2 occurs at lower levels. The mutant brain also shows elevated transcription of repetitive elements. Our data argue that MeCP2 may not act as a gene-specific transcriptional repressor in neurons, but might instead dampen transcriptional noise genome-wide in a DNA methylation-dependent manner.


Subject(s)
Chromatin/metabolism , Histones/metabolism , Methyl-CpG-Binding Protein 2/metabolism , Neurons/metabolism , Protein Multimerization , Animals , Brain/cytology , Brain/metabolism , Cell Nucleus/metabolism , CpG Islands , DNA Methylation , Genome , Methyl-CpG-Binding Protein 2/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/cytology , Nucleosomes/metabolism , Protein Binding , Transcription, Genetic
5.
Nat Methods ; 7(2): 130-2, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20081834

ABSTRACT

We report an alternative approach to transcriptome sequencing for the Illumina Genome Analyzer, in which the reverse transcription reaction takes place on the flowcell. No amplification is performed during the library preparation, so PCR biases and duplicates are avoided, and because the template is poly(A)(+) RNA rather than cDNA, the resulting sequences are necessarily strand-specific. The method is compatible with paired- or single-end sequencing.


Subject(s)
Chromosome Mapping/methods , Fluorescence Resonance Energy Transfer/methods , Gene Expression Profiling/methods , Sequence Analysis, DNA/methods , Transcription Factors/genetics , Nucleic Acid Amplification Techniques
6.
PLoS Genet ; 5(7): e1000569, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19609351

ABSTRACT

High-density, strand-specific cDNA sequencing (ssRNA-seq) was used to analyze the transcriptome of Salmonella enterica serovar Typhi (S. Typhi). By mapping sequence data to the entire S. Typhi genome, we analyzed the transcriptome in a strand-specific manner and further defined transcribed regions encoded within prophages, pseudogenes, previously un-annotated, and 3'- or 5'-untranslated regions (UTR). An additional 40 novel candidate non-coding RNAs were identified beyond those previously annotated. Proteomic analysis was combined with transcriptome data to confirm and refine the annotation of a number of hpothetical genes. ssRNA-seq was also combined with microarray and proteome analysis to further define the S. Typhi OmpR regulon and identify novel OmpR regulated transcripts. Thus, ssRNA-seq provides a novel and powerful approach to the characterization of the bacterial transcriptome.


Subject(s)
Salmonella typhi/genetics , Bacterial Proteins/analysis , DNA, Complementary , Gene Expression Profiling , Proteomics , RNA, Bacterial/analysis , RNA, Bacterial/genetics , Sequence Analysis, RNA
7.
Nature ; 447(7146): 799-816, 2007 Jun 14.
Article in English | MEDLINE | ID: mdl-17571346

ABSTRACT

We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.


Subject(s)
Genome, Human/genetics , Genomics , Regulatory Sequences, Nucleic Acid/genetics , Transcription, Genetic/genetics , Chromatin/genetics , Chromatin/metabolism , Chromatin Immunoprecipitation , Conserved Sequence/genetics , DNA Replication , Evolution, Molecular , Exons/genetics , Genetic Variation/genetics , Heterozygote , Histones/metabolism , Humans , Pilot Projects , Protein Binding , RNA, Messenger/genetics , RNA, Untranslated/genetics , Transcription Factors/metabolism , Transcription Initiation Site
8.
Genome Res ; 17(6): 691-707, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17567990

ABSTRACT

We generated high-resolution maps of histone H3 lysine 9/14 acetylation (H3ac), histone H4 lysine 5/8/12/16 acetylation (H4ac), and histone H3 at lysine 4 mono-, di-, and trimethylation (H3K4me1, H3K4me2, H3K4me3, respectively) across the ENCODE regions. Studying each modification in five human cell lines including the ENCODE Consortium common cell lines GM06990 (lymphoblastoid) and HeLa-S3, as well as K562, HFL-1, and MOLT4, we identified clear patterns of histone modification profiles with respect to genomic features. H3K4me3, H3K4me2, and H3ac modifications are tightly associated with the transcriptional start sites (TSSs) of genes, while H3K4me1 and H4ac have more widespread distributions. TSSs reveal characteristic patterns of both types of modification present and the position relative to TSSs. These patterns differ between active and inactive genes and in particular the state of H3K4me3 and H3ac modifications is highly predictive of gene activity. Away from TSSs, modification sites are enriched in H3K4me1 and relatively depleted in H3K4me3 and H3ac. Comparison between cell lines identified differences in the histone modification profiles associated with transcriptional differences between the cell lines. These results provide an overview of the functional relationship among histone modifications and gene expression in human cells.


Subject(s)
Genome, Human/physiology , Histones/metabolism , Protein Processing, Post-Translational/physiology , Transcription, Genetic/physiology , HeLa Cells , Humans , K562 Cells
9.
Proc Natl Acad Sci U S A ; 101(26): 9786-91, 2004 Jun 29.
Article in English | MEDLINE | ID: mdl-15213324

ABSTRACT

Staphylococcus aureus is an important nosocomial and community-acquired pathogen. Its genetic plasticity has facilitated the evolution of many virulent and drug-resistant strains, presenting a major and constantly changing clinical challenge. We sequenced the approximately 2.8-Mbp genomes of two disease-causing S. aureus strains isolated from distinct clinical settings: a recent hospital-acquired representative of the epidemic methicillin-resistant S. aureus EMRSA-16 clone (MRSA252), a clinically important and globally prevalent lineage; and a representative of an invasive community-acquired methicillin-susceptible S. aureus clone (MSSA476). A comparative-genomics approach was used to explore the mechanisms of evolution of clinically important S. aureus genomes and to identify regions affecting virulence and drug resistance. The genome sequences of MRSA252 and MSSA476 have a well conserved core region but differ markedly in their accessory genetic elements. MRSA252 is the most genetically diverse S. aureus strain sequenced to date: approximately 6% of the genome is novel compared with other published genomes, and it contains several unique genetic elements. MSSA476 is methicillin-susceptible, but it contains a novel Staphylococcal chromosomal cassette (SCC) mec-like element (designated SCC(476)), which is integrated at the same site on the chromosome as SCCmec elements in MRSA strains but encodes a putative fusidic acid resistance protein. The crucial role that accessory elements play in the rapid evolution of S. aureus is clearly illustrated by comparing the MSSA476 genome with that of an extremely closely related MRSA community-acquired strain; the differential distribution of large mobile elements carrying virulence and drug-resistance determinants may be responsible for the clinically important phenotypic differences in these strains.


Subject(s)
Drug Resistance, Bacterial/genetics , Evolution, Molecular , Genome, Bacterial , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Drug Resistance, Bacterial/drug effects , Genes, Bacterial/genetics , Genetic Variation , Genomics , Humans , Phylogeny , Sequence Analysis, DNA , Staphylococcus aureus/classification , Staphylococcus aureus/drug effects , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...