Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-448196

ABSTRACT

The emergence of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resultant pandemic of coronavirus disease 2019 (COVID-19) has led to over one hundred million confirmed infections, greater than three million deaths, and severe economic and social disruption. Animal models of SARS-CoV-2 are critical tools for the pre-clinical evaluation of antivirals, vaccines, and candidate therapeutics currently under urgent development to curb COVID-19-associated morbidity and mortality. The golden (Syrian) hamster model of SARS-CoV-2 infection recapitulates key characteristics of severe COVID-19, including high-titer viral replication in the upper and lower respiratory tract and the development of pathogenic lesions in the lungs. In this work we examined the influence of the route of exposure, sex, and age on SARS-CoV-2 pathogenesis in golden hamsters. We report that delivery of SARS-CoV-2 primarily to the nasal passages (low-volume intranasal), the upper and lower respiratory tract (high-volume intranasal), or the digestive tract (intragastric) results in comparable viral titers in the lung tissue and similar levels of viral shedding during acute infection. However, low-volume intranasal exposure results in milder weight loss during acute infection while intragastric exposure leads to a diminished capacity to regain body weight following the period of acute illness. Further, we examined both sex and age differences in response to SARS-CoV-2 infection. Male hamsters, and to a greater extent older male hamsters, display an impaired capacity to recover from illness and a delay in viral clearance compared to females. Lastly, route of exposure, sex, and age were found to influence the nature of the host inflammatory cytokine response, but they had a minimal effect on both the quality and durability of the humoral immune response as well as the susceptibility of hamsters to SARS-CoV-2 re-infection. Together, these data indicate that the route of exposure, sex, and age have a meaningful impact SARS-CoV-2 pathogenesis in hamsters and that these variables should be considered when designing pre-clinical challenge studies.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-221291

ABSTRACT

The zoonotic spillover of the pandemic SARS-coronavirus 2 (SARS-CoV-2) from an animal reservoir, currently presumed to be the Chinese horseshoe bat, into a naive human population has rapidly resulted in a significant global public health emergency. Worldwide circulation of SARS-CoV-2 in humans raises the theoretical risk of reverse zoonosis events with wildlife, reintroductions of SARS-CoV-2 into permissive non-domesticated animals, potentially seeding new host reservoir species and geographic regions in which bat SARS-like coronaviruses have not historically been endemic. Here we report that North American deer mice (Peromyscus maniculatus) and some closely related members of the Cricetidae family of rodents possess key amino acid residues within the angiotensin-converting enzyme 2 (ACE2) receptor known to confer SARS-CoV-2 spike protein binding. Peromyscus rodent species are widely distributed across North America and are the primary host reservoirs of several emerging pathogens that repeatedly spill over into humans including Borrelia burgdorferi, the causative agent of Lyme disease, deer tick virus, and Sin Nombre orthohantavirus, the causative agent of hantavirus pulmonary syndrome (HPS). We demonstrate that adult deer mice are susceptible to SARS-CoV-2 infection following intranasal exposure to a human isolate, resulting in viral replication in the upper and lower respiratory tract with little or no signs of disease. Further, shed infectious virus is detectable in nasal washes, oropharyngeal and rectal swabs, and viral RNA is detectable in feces and occasionally urine. We further show that deer mice are capable of transmitting SARS-CoV-2 to naive deer mice through direct contact. The extent to which these observations may translate to wild deer mouse populations remains unclear, and the risk of reverse zoonosis and/or the potential for the establishment of Peromyscus rodents as a North American reservoir for SARS-CoV-2 is unknown. Nevertheless, efforts to monitor wild, peri-domestic Peromyscus rodent populations are likely warranted as the SARS-CoV-2 pandemic progresses.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20128884

ABSTRACT

The spread of COVID-19 in healthcare settings is concerning, with healthcare workers representing a disproportionately high percentage of confirmed cases. Although SARS-CoV-2 virus has been found to persist on surfaces for a number of days, the extent and duration of fomites as a mode of transmission, particularly in healthcare settings, has not been fully characterized. To shed light on this critical matter, the present study provides the first comprehensive assessment of SARS-CoV-2 stability on experimentally contaminated personal protective equipment (PPE) widely used by healthcare workers and the general public. Persistence of viable virus was monitored over 21 days on eight different materials, including nitrile medical examination gloves, reinforced chemical resistant gloves, N-95 and N-100 particulate respirator masks, Tyvek(R), plastic, cotton, and stainless steel. Unlike previous reports, viable SARS-CoV-2 in the presence of a soil load persisted for up to 21 days on experimentally inoculated PPE, including materials from filtering facepiece respirators (N-95 and N-100 masks) and a plastic visor. Conversely, when applied to 100% cotton fabric, the virus underwent rapid degradation and became undetectable in less than 24 hours. These findings underline the importance of appropriate handling of contaminated PPE during and following use in high-risk settings and provide interesting insight into the potential utility of cotton, including cotton masks, in limiting COVID-19 transmission.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20049346

ABSTRACT

The response to the COVID-19 epidemic is generating severe shortages of personal protective equipment around the world. In particular, the supply of N95 respirator masks has become severely depleted, with supplies having to be rationed and health care workers having to use masks for prolonged periods in many countries. We sought to test the ability of 5 different decontamination methods: autoclave treatment, ethylene oxide gassing, low temperature hydrogen peroxide gas plasma treatment, vaporous hydrogen peroxide exposure and peracetic acid dry fogging to decontaminate a variety of different N95 masks of experimental contamination with SARS-CoV-2 or Vesicular stomatitis virus as a surrogate. In addition, we sought to determine whether masks would tolerate repeated cycles of decontamination while maintaining structural and functional integrity. We found that one cycle of treatment with all modalities was effective in decontamination and was associated with no structural or functional deterioration. Vaporous hydrogen peroxide, peracetic acid dry fogging and autoclave treatments were associated with no loss of structural or functional integrity to a minimum of 10 cycles for the mask models tested. The molded N95 masks however tolerated only 1 cycle of autoclaving. The successful application of autoclaving for layered fabric, pleated masks may be of particular use to institutions globally due to the virtually universal accessibility of autoclaves in health care settings.

SELECTION OF CITATIONS
SEARCH DETAIL