Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 24(3): 787-801, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25256353

ABSTRACT

TAR DNA-binding protein-43 (TDP-43) is a nuclear RNA-binding protein involved in many cellular pathways. TDP-43-positive inclusions are a hallmark of amyotrophic lateral sclerosis (ALS). The major clinical presentation of ALS is muscle weakness due to the degeneration of motor neurons. Mislocalization of TDP-43 from the nucleus to the cytoplasm is an early event of ALS. In this study, we demonstrate that cytoplasmic mislocalization of TDP-43 was accompanied by increased activation of AMP-activated protein kinase (AMPK) in motor neurons of ALS patients. The activation of AMPK in a motor neuron cell line (NSC34) or mouse spinal cords induced the mislocalization of TDP-43, recapitulating this characteristic of ALS. Down-regulation of AMPK-α1 or exogenous expression of a dominant-negative AMPK-α1 mutant reduced TDP-43 mislocalization. Suppression of AMPK activity using cAMP-simulating agents rescued the mislocalization of TDP-43 in NSC34 cells and delayed disease progression in TDP-43 transgenic mice. Our findings demonstrate that activation of AMPK-α1 plays a critical role in TDP-43 mislocalization and the development of ALS; thus, AMPK-α1 may be a potential drug target for this devastating disease.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Cytoplasm/metabolism , DNA-Binding Proteins/metabolism , Adult , Aged , Animals , Cell Line , Cell Nucleus/metabolism , Disease Models, Animal , Female , Gene Expression Regulation , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Motor Neurons/metabolism , Spinal Cord/metabolism
2.
J Ethnopharmacol ; 116(3): 431-8, 2008 Mar 28.
Article in English | MEDLINE | ID: mdl-18243609

ABSTRACT

AIM OF THE STUDY: Actinostemma lobatum Maxim, a wildlife plant of Cucurbitaceae family, has been utilized for the prevention or treatment of cardiovascular diseases as a folk remedy in Korea. However, its scientific evidence remains unclear. Thus, in the present study, we examined the effects of butanol fraction of Actinostemma lobatum Maxim (BFALM) on the in vitro and in vivo antithrombotic activity and possible mechanisms were elucidated for the first time. MATERIAL AND METHODS: To elucidate the antithrombotic mechanism of BFALM, platelet aggregation assay, coagulation assay, glycoprotein IIb/IIIa assay, thromboxane A(2) assay and in vivo pulmonary thromboembolism experiment were performed. RESULTS: BFALM significantly inhibited collagen, adenosine diphosphate (ADP) and thrombin-induced platelet aggregation in a concentration dependent manner. Consistently, oral administration of BFALM resulted in a dose-dependent increase of survival rates of mice with pulmonary thromboembolism induced by intravenous injection of collagen and epinephrine. In mechanism assays for the antithrombotic activity of BFALM, BFALM significantly inhibited the fibrinogen binding to the platelet surface Glycoprotein IIb/IIIa (GP IIb/IIIa) receptor in a concentration dependent fashion, as well as reduced the level of thromboxane A(2) at 400microg/ml. Furthermore, BFALM significantly prolonged the prothrombin time (PT) and activated partial thromboplastin time (APTT) compared with untreated control. CONCLUSIONS: These results suggest that BFALM may exert antithrombotic activity through inhibition of platelet aggregation via GP IIb/IIIa and thromboxane A(2) pathways, along with anticoagulatory activity through intrinsic and extrinsic pathways.


Subject(s)
Cucurbitaceae/chemistry , Fibrinolytic Agents/pharmacology , Integrin beta3/metabolism , Phytotherapy , Plant Extracts/pharmacology , Platelet Membrane Glycoprotein IIb/metabolism , Pulmonary Embolism/drug therapy , Animals , Blood Coagulation/drug effects , Blood Platelets/chemistry , Blood Platelets/drug effects , Butanols/chemistry , Dose-Response Relationship, Drug , Female , Fibrinogen/metabolism , Fibrinolytic Agents/therapeutic use , Mice , Mice, Inbred ICR , Plant Extracts/chemistry , Platelet Aggregation/drug effects , Pulmonary Embolism/metabolism , Rutin/analysis , Survival Analysis , Thromboxane A2/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...