Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Nahrung ; 44(5): 318-22, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11075372

ABSTRACT

The aroma compositions of oxidised sunflower oil, linseed oil and a blend thereof (85/15) were compared with frequently used indicators for primary and secondary lipid oxidation. Primary lipid oxidation was followed by the formation of conjugated dienes, secondary lipid oxidation by proponal and hexanal formation. Highest concentrations of conjugated dienes and propanal were measured in the linseed oil, followed by the blend and sunflower oil, respectively. Highest concentrations of hexanal were determined in the blend. At similar primary oxidation levels, volatile compounds of the oils were isolated in a model mouth system and subsequently analysed by gas chromatography/sniffing port analysis. Propanal, pentanal, 1-penten-3-one, hexanal, 1-pentanol, octanal, 1-octen-3-one, 1-octen-3-ol and (E,Z)-2,4-heptadienal possessed detectable odours. Comparing the three oils, most aroma compounds and greatest intensities were determined in the blend. Conjugated diene concentrations did not predict the formation of aroma compounds adequately. Although propanal and hexanal concentrations were reasonable indicators for aroma development in linseed and sunflower oil, respectively, neither of the indicators predicted aroma development in all three oils sufficiently.


Subject(s)
Fatty Acids/analysis , Lipids/chemistry , Odorants/analysis , Plant Oils/analysis , Aldehydes/analysis , Gas Chromatography-Mass Spectrometry , Helianthus/chemistry , Linseed Oil/analysis , Oxidation-Reduction
2.
J Agric Food Chem ; 47(10): 4365-9, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10552817

ABSTRACT

The formation of odor active compounds resulting from initial lipid oxidation in sunflower oil-in-water emulsions was examined during storage at 60 degrees C. The emulsions differed in initial pH, that is, pH 3 and 6. The volatile compounds were isolated under mouth conditions and were analyzed by gas chromatography/sniffing port analysis. The lipid oxidation rate was followed by the formation of conjugated hydroperoxide dienes and headspace hexanal. The initial pH affected the lipid oxidation rate in the emulsions: the formation of conjugated diene hydroperoxides and the hexanal concentration in the static headspace were increased at pH 6. Pentanal, hexanal, 3-pentanol, and 1-octen-3-one showed odor activity in the emulsions after 6 days of storage, for both pH 3 and 6. Larger amounts of odor active compounds were released from the pH 6 emulsion with extended storage. It was shown that this increased release at pH 6 was not due to increased volatility because an increase in pH diminished the static headspace concentrations of added compounds in emulsions.


Subject(s)
Fats, Unsaturated/chemistry , Food Preservation , Odorants/analysis , Plant Oils/chemistry , Water/chemistry , Emulsions , Humans , Hydrogen-Ion Concentration , Oxidation-Reduction , Sunflower Oil , Volatilization
3.
Biospectroscopy ; 5(6): 358-70, 1999.
Article in English | MEDLINE | ID: mdl-10604288

ABSTRACT

Resonance Raman spectroscopy and quantum chemical calculations were used to investigate the molecular origin of the large redshift assumed by the electronic absorption spectrum of astaxanthin in alpha-crustacyanin, the major blue carotenoprotein from the carapace of the lobster, Homarus gammarus. Resonance Raman spectra of alpha-crustacyanin reconstituted with specifically 13C-labeled astaxanthins at the positions 15, 15,15', 14,14', 13,13', 12,12', or 20,20' were recorded. This approach enabled us to obtain information about the effect of the ligand-protein interactions on the geometry of the astaxanthin chromophore in the ground electronic state. The magnitude of the downshifts of the C==C stretching modes for each labeled compound indicate that the main perturbation on the central part of the polyene chain is not homogeneous. In addition, changes in the 1250-1400 cm(-1) spectral range indicate that the geometry of the astaxanthin polyene chain is moderately changed upon binding to the protein. Semiempirical quantum chemical modeling studies (Austin method 1) show that the geometry change cannot be solely responsible for the bathochromic shift from 480 to 632 nm of protein-bound astaxanthin. The calculations are consistent with a polarization mechanism that involves the protonation or another interaction with a positive ionic species of comparable magnitude with both ketofunctionalities of the astaxanthin-chromophore and support the changes observed in the resonance Raman and visible absorption spectra. The results are in good agreement with the conclusions that were drawn on the basis of a study of the charge densities in the chromophore in alpha-crustacyanin by solid-state NMR spectroscopy. From the results the dramatic bathochromic shift can be explained not only from a change in the ground electronic state conformation but also from an interaction in the excited electronic state that significantly decreases the energy of the pi-antibonding C==O orbitals and the HOMO-LUMO gap.


Subject(s)
Nephropidae/chemistry , Pigments, Biological/chemistry , Proteins/chemistry , beta Carotene/analogs & derivatives , Animals , Carrier Proteins , Models, Chemical , Models, Molecular , Molecular Structure , Pigments, Biological/isolation & purification , Pigments, Biological/metabolism , Proteins/isolation & purification , Proteins/metabolism , Quantum Theory , Spectrum Analysis, Raman , Xanthophylls , beta Carotene/chemistry , beta Carotene/metabolism
4.
Biospectroscopy ; 5(1): 19-33, 1999.
Article in English | MEDLINE | ID: mdl-10219878

ABSTRACT

Semiempirical AM1 calculations have been carried out for beta-carotene and the three xanthophylls (zeaxanthin, canthaxanthin, and astaxanthin) containing oxygen functions (hydroxy/keto groups) found in the majority of natural pigment. The fully optimized geometries correspond well with the X-ray structures of beta-carotene and canthaxanthin and indicate that substitutions on the terminal rings have a minimal effect on the conformation of the chromophore. Twisting along the polyenic chain results from steric interaction involving methyl substituents, and a Ci point group can be proposed for the four investigated carotenoids. AM1 calculated excitation energies for the strongly allowed excited states can be compared to with the experimental absorption band in the visible region, considering solvent effect. Resonance Raman (RR) and Fourier transform (FT) Raman spectra of natural astaxanthin as well as astaxanthins specifically 13C labeled at the positions 12,12'; 13,13'; 14,14'; 15,15'; 15, and 20,20' were recorded. Furthermore the RR and FT Raman spectra of the asymmetric carotenoid 20-norastaxanthin are presented. The data reveal a substantial amount of information about the coupling between the different vibrations, and enabled an extensive experimental verification of the theoretical normal-coordinate analysis previously performed on polyenic molecules [J Raman Spectrosc 1983, 14, 310-321; Advances in Infrared and Raman Spectroscopy, Vol. 12, 1985, pp. 115-178; Spectrochim Acta 1996, 53, 381-392; Biochim Biophys Acta 1994, 1185, 188-196]. The results make up a very interesting dataset which allowed the interpretation and/or observation of several, hitherto never observed or not well understood, effects in the Raman spectra of the differently labeled astaxanthins.


Subject(s)
Carotenoids/analysis , Spectrum Analysis, Raman/methods , Absorption , Canthaxanthin/chemistry , Carotenoids/chemistry , Electrons , Lasers , Models, Chemical , Models, Molecular , Molecular Conformation , Molecular Structure , Normal Distribution , Spectroscopy, Fourier Transform Infrared , Xanthophylls , Zeaxanthins , beta Carotene/analogs & derivatives , beta Carotene/chemistry
5.
Biochemistry ; 36(24): 7288-96, 1997 Jun 17.
Article in English | MEDLINE | ID: mdl-9200677

ABSTRACT

Selective isotope enrichment, 13C magic angle spinning (MAS) NMR, and semiempirical quantum chemical modeling, have been used to analyze ligand-protein interactions associated with the bathochromic shift of astaxanthin in alpha-crustacyanin, the blue carotenoprotein complex from the carapace of the lobster Homarus gammarus. Spectra of alpha-crustacyanin were obtained after reconstitution with astaxanthins labeled with 13C at positions 4,4', 12,12', 13,13', or 20,20'. The data reveal substantial downfield shifts of 4.9 and 7.0 ppm at positions 12 and 12' in the complex, respectively. In contrast, at the 13 and 13' positions, small upfield shifts of 1.9 ppm were observed upon binding to the protein. These data are in line with previously obtained results for positions 14,14' (3.9 and 6.8 ppm downfield) and 15,15' (0.6 ppm upfield) and confirm the unequal perturbation of both halves after binding of the chromophore. However, these results also show that the main perturbation is of symmetrical origin, since the chemical shift differences exhibit a similar pattern in both halves of the astaxanthin molecule. A small downfield shift of 2.4 ppm was detected for the 4 and 4' positions. Finally, the 20,20' methyl groups are shifted 0.4 ppm upfield by the protein. The full data set provides convincing evidence that charge polarization is of importance for the bathochromic shift. The NMR shifts are compared with calculated charge densities for astaxanthin subjected to variations in protonation states of the ring-functional groups, as models of ligand-protein interactions. Taking into account the color shift and other available optical data, the current model for the mechanisms of interaction with the protein was refined. The results point toward a mechanism in which the astaxanthin is charged and subject to strong electrostatic polarizations originating from both keto groups, most likely a double protonation.


Subject(s)
Magnetic Resonance Spectroscopy , Models, Chemical , Nephropidae , Proteins/chemistry , beta Carotene/analogs & derivatives , Animals , Carbon Isotopes , Carrier Proteins , Chemical Phenomena , Chemistry, Physical , Molecular Conformation , Molecular Structure , Pigments, Biological , Xanthophylls , beta Carotene/chemistry
6.
FEBS Lett ; 362(1): 34-8, 1995 Mar 27.
Article in English | MEDLINE | ID: mdl-7698348

ABSTRACT

MAS (magic angle spinning) 13C NMR has been used to study protein-chromophore interactions in alpha-crustacyanin, the blue astaxanthin-binding carotenoprotein of the lobster, Homarus gammarus, reconstituted with astaxanthins labelled with 13C at the 14,14' or 15,15' positions. Two signals are seen for alpha-crustacyanin containing [14,14'-13C2]astaxanthin, shifted 6.9 and 4.0 ppm downfield from the 134.1 ppm signal of uncomplexed astaxanthin in the solid state. With alpha-crustacyanin containing [15,15'-13C2]astaxanthin, one essentially unshifted broad signal is seen. Hence binding to the protein causes a decrease in electronic charge density, providing the first experimental evidence that a charge redistribution mechanism contributes to the bathochromic shift of the astaxanthin in alpha-crustacyanin, in agreement with inferences based on resonance Raman data [Salares, et al. (1979) Biochim. Biophys. Acta 576, 176-191]. The splitting of the 14 and 14' signals provides evidence for asymmetric binding of each astaxanthin molecule by the protein.


Subject(s)
Carotenoids/chemistry , Pigments, Biological/chemistry , Proteins/chemistry , beta Carotene/analogs & derivatives , Animals , Carrier Proteins , Magnetic Resonance Spectroscopy , Nephropidae/chemistry , Protein Conformation , Xanthophylls
SELECTION OF CITATIONS
SEARCH DETAIL