Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Curr Biol ; 2024 May 16.
Article En | MEDLINE | ID: mdl-38776901

Studying the independent evolution of similar traits provides valuable insights into the ecological and genetic factors driving phenotypic evolution.1 The transition from outcrossing to self-fertilization is common in plant evolution2 and is often associated with a reduction in floral attractive features such as display size, chemical signals, and pollinator rewards.3 These changes are believed to result from the reallocation of the resources used for building attractive flowers, as the need to attract pollinators decreases.2,3 We investigated the similarities in the evolution of flower fragrance following independent transitions to self-fertilization in Capsella.4,5,6,7,8,9 We identified several compounds that exhibited similar changes in different selfer lineages, such that the flower scent composition reflects mating systems rather than evolutionary history within this genus. We further demonstrate that the repeated loss of ß-ocimene emission, one of the compounds most strongly affected by these transitions, was caused by mutations in different genes. In one of the Capsella selfing lineages, the loss of its emission was associated with a mutation altering subcellular localization of the ortholog of TERPENE SYNTHASE 2. This mutation appears to have been fixed early after the transition to selfing through the capture of variants segregating in the ancestral outcrossing population. The large extent of convergence in the independent evolution of flower scent, together with the evolutionary history and molecular consequences of a causal mutation, suggests that the emission of specific volatiles evolved as a response to changes in ecological pressures rather than resource limitation.

2.
Sci Rep ; 14(1): 1076, 2024 01 11.
Article En | MEDLINE | ID: mdl-38212511

Egg deposition by herbivorous insects is well known to elicit defensive plant responses. Our study aimed to elucidate the insect and plant species specificity of these responses. To study the insect species specificity, we treated Arabidopsis thaliana with egg extracts and egg-associated secretions of a sawfly (Diprion pini), a beetle (Xanthogaleruca luteola) and a butterfly (Pieris brassicae). All egg extracts elicited salicylic acid (SA) accumulation in the plant, and all secretions induced expression of plant genes known to be responsive to the butterfly eggs, among them Pathogenesis-Related (PR) genes. All secretions contained phosphatidylcholine derivatives, known elicitors of SA accumulation and PR gene expression in Arabidopsis. The sawfly egg extract did not induce plant camalexin levels, while the other extracts did. Our studies on the plant species specificity revealed that Solanum dulcamara and Ulmus minor responded with SA accumulation and cell death to P. brassicae eggs, i.e. responses also known for A. thaliana. However, the butterfly eggs induced neoplasms only in S. dulcamara. Our results provide evidence for general, phosphatidylcholine-based, egg-associated elicitors of plant responses and for conserved plant core responses to eggs, but also point to plant and insect species-specific traits in plant-insect egg interactions.


Arabidopsis , Butterflies , Coleoptera , Hymenoptera , Animals , Oviposition , Butterflies/physiology , Hymenoptera/physiology , Arabidopsis/genetics , Salicylic Acid , Phosphatidylcholines
3.
Am J Bot ; 110(10): e16237, 2023 10.
Article En | MEDLINE | ID: mdl-37661924

PREMISE: Floral scent, usually consisting of multiple compounds, is a complex trait, and its role in pollinator attraction has received increasing attention. However, disentangling the effect of individual floral scent compounds is difficult due to the complexity of isolating the effect of single compounds by traditional methods. METHODS: Using available quasi-isogenic lines (qILs) that were generated as part of the original mapping of the floral scent volatile-related loci CNL1 (benzaldehyde) and TPS2 (ß-ocimene) in Capsella, we generated four genotypes that should only differ in these two compounds. Plants of the four genotypes were introduced into a common garden outside the natural range of C. rubella or C. grandiflora, with individuals of a self-compatible C. grandiflora line as pollen donors, whose different genetic background facilitates the detection of outcrossing events. Visitors to flowers of all five genotypes were compared, and the seeds set during the common-garden period were collected for high-throughput amplicon-based sequencing to estimate their outcrossing rates. RESULTS: Benzaldehyde and ß-ocimene emissions were detected in the floral scent of corresponding genotypes. While some pollinator groups showed specific visitation preferences depending on scent compounds, the outcrossing rates in seeds did not vary among the four scent-manipulated genotypes. CONCLUSIONS: The scent-manipulated Capsella materials constructed using qILs provide a powerful system to study the ecological effects of individual floral scent compounds under largely natural environments. In Capsella, individual benzaldehyde and ß-ocimene emission may act as attractants for different types of pollinators.


Capsella , Odorants , Humans , Benzaldehydes , Capsella/genetics , Pollination , Flowers
4.
Tree Physiol ; 43(7): 1218-1232, 2023 07 09.
Article En | MEDLINE | ID: mdl-37010106

The studies of the long-term effects of insect infestations on plant anti-herbivore defences tend to focus on feeding-induced damage. Infestations by an entire insect generation, including egg depositions as well as the feeding insects, are often neglected. Whilst there is increasing evidence that the presence of insect eggs can intensify plants' anti-herbivore defences against hatching larvae in the short term, little is known about how insect infestations, including insect egg depositions, affect plant defences in the long term. We addressed this knowledge gap by investigating long-term effects of insect infestation on elm's (Ulmus minor Mill. cv. 'Dahlem') defences against subsequent infestation. In greenhouse experiments, elms were exposed to elm leaf beetle (ELB, Xanthogaleruca luteola) infestation (adults, eggs and larvae). Thereafter, the trees cast their leaves under simulated winter conditions and were re-infested with ELB after the regrowth of their leaves under simulated summer conditions. Elm leaf beetles performed moderately worse on previously infested elms with respect to several developmental parameters. The concentrations of the phenylpropanoids kaempferol and quercetin, which are involved in egg-mediated, short-term effects on elm defences, were slightly higher in the ELB-challenged leaves of previously infested trees than in the challenged leaves of naïve trees. The expression of several genes involved in the phenylpropanoid pathway, jasmonic acid signalling, and DNA and histone modifications appeared to be affected by ELB infestation; however, prior infestation did not alter the expression intensities of these genes. The concentrations of several phytohormones were similarly affected in the currently challenged leaves of previously infested trees and naïve trees. Our study shows that prior infestation of elms by a specialised insect leads to moderately improved defences against subsequent infestation in the following growing season. Prior infestation adds a long-term effect to the short-term enhancer effect that plants show in response to egg depositions when defending against hatching larvae.


Coleoptera , Ulmus , Animals , Seasons , Larva/physiology , Insecta , Trees , Herbivory/physiology , Plant Leaves
5.
New Phytol ; 224(3): 1349-1360, 2019 11.
Article En | MEDLINE | ID: mdl-31400223

The transition from pollinator-mediated outbreeding to selfing has occurred many times in angiosperms. This is generally accompanied by a reduction in traits attracting pollinators, including reduced emission of floral scent. In Capsella, emission of benzaldehyde as a main component of floral scent has been lost in selfing C. rubella by mutation of cinnamate-CoA ligase CNL1. However, the biochemical basis and evolutionary history of this loss remain unknown, as does the reason for the absence of benzaldehyde emission in the independently derived selfer Capsella orientalis. We used plant transformation, in vitro enzyme assays, population genetics and quantitative genetics to address these questions. CNL1 has been inactivated twice independently by point mutations in C. rubella, causing a loss of enzymatic activity. Both inactive haplotypes are found within and outside of Greece, the centre of origin of C. rubella, indicating that they arose before its geographical spread. By contrast, the loss of benzaldehyde emission in C. orientalis is not due to an inactivating mutation in CNL1. CNL1 represents a hotspot for mutations that eliminate benzaldehyde emission, potentially reflecting the limited pleiotropy and large effect of its inactivation. Nevertheless, even closely related species have followed different evolutionary routes in reducing floral scent.


Benzaldehydes/metabolism , Biological Evolution , Capsella/genetics , Alleles , Amino Acids/genetics , Ecotype , Geography , Haplotypes/genetics , Kinetics , Mediterranean Region , Mutation/genetics , Odorants , Plant Proteins/genetics , Plant Proteins/metabolism
6.
Plant Methods ; 15: 47, 2019.
Article En | MEDLINE | ID: mdl-31131016

BACKGROUND: The outcrossing rate is a key determinant of the population-genetic structure of species and their long-term evolutionary trajectories. However, determining the outcrossing rate using current methods based on PCR-genotyping individual offspring of focal plants for multiple polymorphic markers is laborious and time-consuming. RESULTS: We have developed an amplicon-based, high-throughput enabled method for estimating the outcrossing rate and have applied this to an example of scented versus non-scented Capsella (Shepherd's Purse) genotypes. Our results show that the method is able to robustly capture differences in outcrossing rates. They also highlight potential biases in the estimates resulting from differential haplotype sharing of the focal plants with the pollen-donor population at individual amplicons. CONCLUSIONS: This novel method for estimating outcrossing rates will allow determining this key population-genetic parameter with high-throughput across many genotypes in a population, enabling studies into the genetic determinants of successful pollinator attraction and outcrossing.

7.
Curr Biol ; 29(6): 1038-1046.e4, 2019 03 18.
Article En | MEDLINE | ID: mdl-30827915

Evolution of gene-regulatory sequences is considered the primary driver of morphological variation [1-3]. In animals, the diversity of body plans between distantly related phyla is due to the differential expression patterns of conserved "toolkit" genes [4]. In plants, variation in expression domains similarly underlie most of the reported diversity of organ shape both in natural evolution and in the domestication of crops [5-9]. The heart-shaped fruit from members of the Capsella genus is a morphological novelty that has evolved after Capsella diverged from Arabidopsis ∼8 mya [10]. Comparative studies of fruit growth in Capsella and Arabidopsis revealed that the difference in shape is caused by local control of anisotropic growth [11]. Here, we show that sequence variation in regulatory domains of the fruit-tissue identity gene, INDEHISCENT (IND), is responsible for expansion of its expression domain in the heart-shaped fruits from Capsella rubella. We demonstrate that expression of this CrIND gene in the apical part of the valves in Capsella contributes to the heart-shaped appearance. While studies on morphological diversity have revealed the importance of cis-regulatory sequence evolution, few examples exist where the downstream effects of such variation have been characterized in detail. We describe here how CrIND exerts its function on Capsella fruit shape by binding sequence elements of auxin biosynthesis genes to activate their expression and ensure auxin accumulation into highly localized maxima in the fruit valves. Thus, our data provide a direct link between changes in expression pattern and altered hormone homeostasis in the evolution of morphological novelty.


Basic Helix-Loop-Helix Transcription Factors/genetics , Capsella/genetics , Fruit/growth & development , Plant Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Capsella/growth & development , Fruit/genetics , Plant Proteins/metabolism
8.
Development ; 143(18): 3394-406, 2016 09 15.
Article En | MEDLINE | ID: mdl-27624834

Fruits exhibit a vast array of different 3D shapes, from simple spheres and cylinders to more complex curved forms; however, the mechanism by which growth is oriented and coordinated to generate this diversity of forms is unclear. Here, we compare the growth patterns and orientations for two very different fruit shapes in the Brassicaceae: the heart-shaped Capsella rubella silicle and the near-cylindrical Arabidopsis thaliana silique. We show, through a combination of clonal and morphological analyses, that the different shapes involve different patterns of anisotropic growth during three phases. These experimental data can be accounted for by a tissue-level model in which specified growth rates vary in space and time and are oriented by a proximodistal polarity field. The resulting tissue conflicts lead to deformation of the tissue as it grows. The model allows us to identify tissue-specific and temporally specific activities required to obtain the individual shapes. One such activity may be provided by the valve-identity gene FRUITFULL, which we show through comparative mutant analysis to modulate fruit shape during post-fertilisation growth of both species. Simple modulations of the model presented here can also broadly account for the variety of shapes in other Brassicaceae species, thus providing a simplified framework for fruit development and shape diversity.


Brassicaceae/anatomy & histology , Brassicaceae/metabolism , Fruit/anatomy & histology , Fruit/metabolism , Anisotropy , Arabidopsis/anatomy & histology , Arabidopsis/metabolism , Capsella/anatomy & histology , Capsella/metabolism , Gene Expression Regulation, Plant
...