Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Clin Cancer Res ; 27(7): 2061-2073, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33355204

ABSTRACT

PURPOSE: Targeting RAF for antitumor therapy in RAS-mutant tumors holds promise. Herein, we describe in detail novel properties of the type II RAF inhibitor, LXH254. EXPERIMENTAL DESIGN: LXH254 was profiled in biochemical, in vitro, and in vivo assays, including examining the activities of the drug in a large panel of cancer-derived cell lines and a comprehensive set of in vivo models. In addition, activity of LXH254 was assessed in cells where different sets of RAF paralogs were ablated, or that expressed kinase-impaired and dimer-deficient variants of ARAF. RESULTS: We describe an unexpected paralog selectivity of LXH254, which is able to potently inhibit BRAF and CRAF, but has less activity against ARAF. LXH254 was active in models harboring BRAF alterations, including atypical BRAF alterations coexpressed with mutant K/NRAS, and NRAS mutants, but had only modest activity in KRAS mutants. In RAS-mutant lines, loss of ARAF, but not BRAF or CRAF, sensitized cells to LXH254. ARAF-mediated resistance to LXH254 required both kinase function and dimerization. Higher concentrations of LXH254 were required to inhibit signaling in RAS-mutant cells expressing only ARAF relative to BRAF or CRAF. Moreover, specifically in cells expressing only ARAF, LXH254 caused paradoxical activation of MAPK signaling in a manner similar to dabrafenib. Finally, in vivo, LXH254 drove complete regressions of isogenic variants of RAS-mutant cells lacking ARAF expression, while parental lines were only modestly sensitive. CONCLUSIONS: LXH254 is a novel RAF inhibitor, which is able to inhibit dimerized BRAF and CRAF, as well as monomeric BRAF, while largely sparing ARAF.


Subject(s)
MAP Kinase Signaling System/physiology , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins c-raf/antagonists & inhibitors , Animals , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , HCT116 Cells , Humans , Mice , Mutation , Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Protein Multimerization , Proto-Oncogene Proteins B-raf/chemistry , Proto-Oncogene Proteins c-raf/chemistry , Proto-Oncogene Proteins p21(ras)/genetics
2.
Mol Cancer Res ; 17(1): 199-211, 2019 01.
Article in English | MEDLINE | ID: mdl-30201825

ABSTRACT

The most frequent genetic alterations in melanoma are gain-of-function (GOF) mutations in BRAF, which result in RAF-MEK-ERK signaling pathway addiction. Despite therapeutic success of RAF and MEK inhibitors in treating BRAFV600-mutant tumors, a major challenge is the inevitable emergence of drug resistance, which often involves reactivation of the MAPK pathway. Interestingly, resistant tumors are often sensitive to drug withdrawal, suggesting that hyperactivation of the MAPK pathway is not tolerated. To further characterize this phenomenon, isogenic models of inducible MAPK hyperactivation in BRAFV600E melanoma cells were generated by overexpression of ERK2. Using this model system, supraphysiologic levels of MAPK signaling led to cell death, which was reversed by MAPK inhibition. Furthermore, complete tumor regression was observed in an ERK2-overexpressing xenograft model. To identify mediators of MAPK hyperactivation-induced cell death, a large-scale pooled shRNA screen was conducted, which revealed that only shRNAs against BRAF and MAP2K1 rescued loss of cell viability. This suggested that no single downstream ERK2 effector was required, consistent with pleiotropic effects on multiple cellular stress pathways. Intriguingly, the detrimental effect of MAPK hyperactivation could be partially attributed to secreted factors, and more than 100 differentially secreted proteins were identified. The effect of ERK2 overexpression was highly context dependent, as RAS/RAF mutant but not RAS/RAF wild-type melanoma were sensitive to this perturbation. IMPLICATIONS: This vulnerability to MAPK hyperactivation raises the possibility of novel therapeutic approaches for RAS/RAF-mutant cancers.


Subject(s)
MAP Kinase Signaling System , Melanoma/genetics , Melanoma/metabolism , Proto-Oncogene Proteins B-raf/metabolism , ras Proteins/metabolism , Animals , Apoptosis/physiology , Cell Line, Tumor , Female , Heterografts , Humans , Melanoma/pathology , Mice , Mitogen-Activated Protein Kinase 1/biosynthesis , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mutation , Proto-Oncogene Proteins B-raf/genetics , ras Proteins/genetics
3.
J Vis Exp ; (98)2015 Apr 13.
Article in English | MEDLINE | ID: mdl-25938254

ABSTRACT

Telomere dysfunction-induced loss of genome integrity and its associated DNA damage signaling and checkpoint responses are well-established drivers that cause tissue degeneration during ageing. Cancer, with incidence rates greatly increasing with age, is characterized by short telomere lengths and high telomerase activity. To study the roles of telomere dysfunction and telomerase reactivation in ageing and cancer, the protocol shows how to generate two murine inducible telomerase knock-in alleles 4-Hydroxytamoxifen (4-OHT)-inducible TERT-Estrogen Receptor (mTERT-ER) and Lox-Stopper-LoxTERT (LSL-mTERT). The protocol describes the procedures to induce telomere dysfunction and reactivate telomerase activity in mTERT-ER and LSL-mTERT mice in vivo. The representative data show that reactivation of telomerase activity can ameliorate the tissue degenerative phenotypes induced by telomere dysfunction. In order to determine the impact of telomerase reactivation on tumorigenesis, we generated prostate tumor model G4 PB-Cre4 Pten(L/L) p53(L/L) LSL-mTERT(L/L) and thymic T-cell lymphoma model G4 Atm(-/-) mTERT(ER/ER). The representative data show that telomerase reactivation in the backdrop of genomic instability induced by telomere dysfunction can greatly enhance tumorigenesis. The protocol also describes the procedures used to isolate neural stem cells (NSCs) from mTERT-ER and LSL-mTERT mice and reactivate telomerase activity in NSCs in vitro. The representative data show that reactivation of telomerase can enhance the self-renewal capability and neurogenesis in vitro. Finally, the protocol describes the procedures for performing telomere FISH (Fluorescence In Situ Hybridization) on both mouse FFPE (Formalin Fixed and Paraffin Embedded) brain tissues and metaphase chromosomes of cultured cells.


Subject(s)
Alleles , Neoplasms/genetics , Regeneration/genetics , Telomerase/genetics , Animals , Cells, Cultured , Female , Gene Knock-In Techniques/methods , In Situ Hybridization, Fluorescence , Male , Mice , Mice, Inbred C57BL , Neoplasms/pathology , Neural Stem Cells/cytology , Neural Stem Cells/enzymology , Telomere/metabolism
4.
Proc Natl Acad Sci U S A ; 111(8): 3128-33, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24520176

ABSTRACT

Defects in epigenetic regulation play a fundamental role in the development of cancer, and epigenetic regulators have recently emerged as promising therapeutic candidates. We therefore set out to systematically interrogate epigenetic cancer dependencies by screening an epigenome-focused deep-coverage design shRNA (DECODER) library across 58 cancer cell lines. This screen identified BRM/SMARCA2, a DNA-dependent ATPase of the mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complex, as being essential for the growth of tumor cells that harbor loss of function mutations in BRG1/SMARCA4. Depletion of BRM in BRG1-deficient cancer cells leads to a cell cycle arrest, induction of senescence, and increased levels of global H3K9me3. We further demonstrate the selective dependency of BRG1-mutant tumors on BRM in vivo. Genetic alterations of the mSWI/SNF chromatin remodeling complexes are the most frequent among chromatin regulators in cancers, with BRG1/SMARCA4 mutations occurring in ∼10-15% of lung adenocarcinomas. Our findings position BRM as an attractive therapeutic target for BRG1 mutated cancers. Because BRG1 and BRM function as mutually exclusive catalytic subunits of the mSWI/SNF complex, we propose that such synthetic lethality may be explained by paralog insufficiency, in which loss of one family member unveils critical dependence on paralogous subunits. This concept of "cancer-selective paralog dependency" may provide a more general strategy for targeting other tumor suppressor lesions/complexes with paralogous subunits.


Subject(s)
DNA Helicases/deficiency , Epigenesis, Genetic/physiology , Multiprotein Complexes/genetics , Neoplasms/genetics , Nuclear Proteins/deficiency , Transcription Factors/deficiency , Transcription Factors/genetics , Blotting, Western , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cellular Senescence/genetics , Gene Knockdown Techniques , Gene Library , Histones/metabolism , Humans , Immunoprecipitation , Multiprotein Complexes/metabolism , RNA, Small Interfering/genetics , Transcription Factors/metabolism
5.
Cell ; 148(4): 651-63, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22341440

ABSTRACT

To assess telomerase as a cancer therapeutic target and determine adaptive mechanisms to telomerase inhibition, we modeled telomerase reactivation and subsequent extinction in T cell lymphomas arising in Atm(-/-) mice engineered with an inducible telomerase reverse transcriptase allele. Telomerase reactivation in the setting of telomere dysfunction enabled full malignant progression with alleviation of telomere dysfunction-induced checkpoints. These cancers possessed copy number alterations targeting key loci in human T cell lymphomagenesis. Upon telomerase extinction, tumor growth eventually slowed with reinstatement of telomere dysfunction-induced checkpoints, yet growth subsequently resumed as tumors acquired alternative lengthening of telomeres (ALT) and aberrant transcriptional networks centering on mitochondrial biology and oxidative defense. ALT+ tumors acquired amplification/overexpression of PGC-1ß, a master regulator of mitochondrial biogenesis and function, and they showed marked sensitivity to PGC-1ß or SOD2 knockdown. Genetic modeling of telomerase extinction reveals vulnerabilities that motivate coincidental inhibition of mitochondrial maintenance and oxidative defense mechanisms to enhance antitelomerase cancer therapy.


Subject(s)
Mitochondria , Telomerase/antagonists & inhibitors , Telomere Homeostasis , Animals , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Gene Knockdown Techniques , Genes, cdc , Humans , Lymphoma, T-Cell/genetics , Lymphoma, T-Cell/metabolism , Lymphoma, T-Cell/pathology , Mice , Mitochondria/metabolism , Neoplasm Invasiveness/pathology , Neoplasms/genetics , Neoplasms/metabolism , Protein Serine-Threonine Kinases/genetics , Reactive Oxygen Species/metabolism , Receptors, Estrogen/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Telomerase/genetics , Telomerase/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics
6.
Cell ; 148(5): 896-907, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22341455

ABSTRACT

To determine the role of telomere dysfunction and telomerase reactivation in generating pro-oncogenic genomic events and in carcinoma progression, an inducible telomerase reverse transcriptase (mTert) allele was crossed onto a prostate cancer-prone mouse model null for Pten and p53 tumor suppressors. Constitutive telomerase deficiency and associated telomere dysfunction constrained cancer progression. In contrast, telomerase reactivation in the setting of telomere dysfunction alleviated intratumoral DNA-damage signaling and generated aggressive cancers with rearranged genomes and new tumor biological properties (bone metastases). Comparative oncogenomic analysis revealed numerous recurrent amplifications and deletions of relevance to human prostate cancer. Murine tumors show enrichment of the TGF-ß/SMAD4 network, and genetic validation studies confirmed the cooperative roles of Pten, p53, and Smad4 deficiencies in prostate cancer progression, including skeletal metastases. Thus, telomerase reactivation in tumor cells experiencing telomere dysfunction enables full malignant progression and provides a mechanism for acquisition of cancer-relevant genomic events endowing new tumor biological capabilities.


Subject(s)
Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Telomerase/metabolism , Telomere/metabolism , Animals , Bone Neoplasms/secondary , Cell Line, Tumor , Crosses, Genetic , DNA Copy Number Variations , Disease Models, Animal , Female , Genomic Instability , Humans , Male , Mice , Tumor Suppressor Protein p53/metabolism
7.
Cancer Cell ; 20(1): 92-103, 2011 Jul 12.
Article in English | MEDLINE | ID: mdl-21741599

ABSTRACT

Clinical and genomic evidence suggests that the metastatic potential of a primary tumor may be dictated by prometastatic events that have additional oncogenic capability. To test this "deterministic" hypothesis, we adopted a comparative oncogenomics-guided function-based strategy involving: (1) comparison of global transcriptomes of two genetically engineered mouse models with contrasting metastatic potential, (2) genomic and transcriptomic profiles of human melanoma, (3) functional genetic screen for enhancers of cell invasion, and (4) evidence of expression selection in human melanoma tissues. This integrated effort identified six genes that are potently proinvasive and oncogenic. Furthermore, we show that one such gene, ACP5, confers spontaneous metastasis in vivo, engages a key pathway governing metastasis, and is prognostic in human primary melanomas.


Subject(s)
Melanoma/genetics , Melanoma/pathology , Oncogenes/genetics , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Acid Phosphatase/genetics , Acid Phosphatase/metabolism , Animals , Cell Lineage/genetics , Conserved Sequence/genetics , Evolution, Molecular , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genome/genetics , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Kaplan-Meier Estimate , Mice , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Staging , Phosphorylation , Reproducibility of Results , Tartrate-Resistant Acid Phosphatase , Tissue Array Analysis
8.
Nature ; 470(7334): 359-65, 2011 Feb 17.
Article in English | MEDLINE | ID: mdl-21307849

ABSTRACT

Telomere dysfunction activates p53-mediated cellular growth arrest, senescence and apoptosis to drive progressive atrophy and functional decline in high-turnover tissues. The broader adverse impact of telomere dysfunction across many tissues including more quiescent systems prompted transcriptomic network analyses to identify common mechanisms operative in haematopoietic stem cells, heart and liver. These unbiased studies revealed profound repression of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha and beta (PGC-1α and PGC-1ß, also known as Ppargc1a and Ppargc1b, respectively) and the downstream network in mice null for either telomerase reverse transcriptase (Tert) or telomerase RNA component (Terc) genes. Consistent with PGCs as master regulators of mitochondrial physiology and metabolism, telomere dysfunction is associated with impaired mitochondrial biogenesis and function, decreased gluconeogenesis, cardiomyopathy, and increased reactive oxygen species. In the setting of telomere dysfunction, enforced Tert or PGC-1α expression or germline deletion of p53 (also known as Trp53) substantially restores PGC network expression, mitochondrial respiration, cardiac function and gluconeogenesis. We demonstrate that telomere dysfunction activates p53 which in turn binds and represses PGC-1α and PGC-1ß promoters, thereby forging a direct link between telomere and mitochondrial biology. We propose that this telomere-p53-PGC axis contributes to organ and metabolic failure and to diminishing organismal fitness in the setting of telomere dysfunction.


Subject(s)
Mitochondria/metabolism , Mitochondria/pathology , Telomere/metabolism , Telomere/pathology , Adenosine Triphosphate/biosynthesis , Aging/metabolism , Aging/pathology , Animals , Cardiomyopathies/chemically induced , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Cell Proliferation , DNA, Mitochondrial/analysis , Doxorubicin/toxicity , Gluconeogenesis , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Liver/cytology , Liver/metabolism , Mice , Myocardium/cytology , Myocardium/metabolism , RNA/genetics , Reactive Oxygen Species/metabolism , Telomerase/deficiency , Telomerase/genetics , Telomere/enzymology , Telomere/genetics , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
9.
Nature ; 469(7328): 102-6, 2011 Jan 06.
Article in English | MEDLINE | ID: mdl-21113150

ABSTRACT

An ageing world population has fuelled interest in regenerative remedies that may stem declining organ function and maintain fitness. Unanswered is whether elimination of intrinsic instigators driving age-associated degeneration can reverse, as opposed to simply arrest, various afflictions of the aged. Such instigators include progressively damaged genomes. Telomerase-deficient mice have served as a model system to study the adverse cellular and organismal consequences of wide-spread endogenous DNA damage signalling activation in vivo. Telomere loss and uncapping provokes progressive tissue atrophy, stem cell depletion, organ system failure and impaired tissue injury responses. Here, we sought to determine whether entrenched multi-system degeneration in adult mice with severe telomere dysfunction can be halted or possibly reversed by reactivation of endogenous telomerase activity. To this end, we engineered a knock-in allele encoding a 4-hydroxytamoxifen (4-OHT)-inducible telomerase reverse transcriptase-oestrogen receptor (TERT-ER) under transcriptional control of the endogenous TERT promoter. Homozygous TERT-ER mice have short dysfunctional telomeres and sustain increased DNA damage signalling and classical degenerative phenotypes upon successive generational matings and advancing age. Telomerase reactivation in such late generation TERT-ER mice extends telomeres, reduces DNA damage signalling and associated cellular checkpoint responses, allows resumption of proliferation in quiescent cultures, and eliminates degenerative phenotypes across multiple organs including testes, spleens and intestines. Notably, somatic telomerase reactivation reversed neurodegeneration with restoration of proliferating Sox2(+) neural progenitors, Dcx(+) newborn neurons, and Olig2(+) oligodendrocyte populations. Consistent with the integral role of subventricular zone neural progenitors in generation and maintenance of olfactory bulb interneurons, this wave of telomerase-dependent neurogenesis resulted in alleviation of hyposmia and recovery of innate olfactory avoidance responses. Accumulating evidence implicating telomere damage as a driver of age-associated organ decline and disease risk and the marked reversal of systemic degenerative phenotypes in adult mice observed here support the development of regenerative strategies designed to restore telomere integrity.


Subject(s)
Aging/metabolism , Aging/pathology , Telomerase/deficiency , Telomerase/metabolism , Aging/drug effects , Animals , Avoidance Learning/drug effects , Brain/anatomy & histology , Brain/cytology , Brain/drug effects , Brain/pathology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , DNA Damage/drug effects , Doublecortin Protein , Enzyme Activation/drug effects , Enzyme Reactivators/pharmacology , Mice , Mice, Inbred C57BL , Models, Animal , Myelin Sheath/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neural Stem Cells/enzymology , Neural Stem Cells/pathology , Organ Size/drug effects , Phenotype , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Regenerative Medicine , Smell/drug effects , Smell/physiology , Tamoxifen/analogs & derivatives , Tamoxifen/pharmacology , Telomerase/genetics , Telomere/drug effects , Telomere/metabolism , Telomere/pathology
11.
J Biol Chem ; 278(11): 9212-8, 2003 Mar 14.
Article in English | MEDLINE | ID: mdl-12514177

ABSTRACT

In eukaryotic cells, the repair of DNA double-strand breaks by homologous recombination requires a RecA-like recombinase, Rad51p, and a Swi2p/Snf2p-like ATPase, Rad54p. Here we find that yeast Rad51p and Rad54p support robust homologous pairing between single-stranded DNA and a chromatin donor. In contrast, bacterial RecA is incapable of catalyzing homologous pairing with a chromatin donor. We also show that Rad54p possesses many of the biochemical properties of bona fide ATP-dependent chromatin-remodeling enzymes, such as ySWI/SNF. Rad54p can enhance the accessibility of DNA within nucleosomal arrays, but it does not seem to disrupt nucleosome positioning. Taken together, our results indicate that Rad54p is a chromatin-remodeling enzyme that promotes homologous DNA pairing events within the context of chromatin.


Subject(s)
Chromatin/chemistry , Chromatin/metabolism , Nuclear Proteins , Nucleic Acid Heteroduplexes/chemistry , Saccharomyces cerevisiae Proteins/physiology , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , DNA/metabolism , DNA Helicases , DNA Repair Enzymes , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Fungal Proteins/metabolism , Nucleic Acid Conformation , Nucleosomes/metabolism , Protein Binding , Rad51 Recombinase , Rec A Recombinases/metabolism , Recombination, Genetic , Saccharomyces cerevisiae Proteins/chemistry , Temperature , Time Factors , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...