ABSTRACT
Supplementing growing cattle grazing native subtropical Campos grasslands during winter improves the low, even negative, average daily weight gain (ADG) typical of extensive animal production systems in Uruguay. Nonetheless, to render the practice profitable, it is crucial to control supplement feed efficiency (SFE), that is, the difference in ADG between supplemented and control animals (ADGchng) per unit of supplement dry matter (DM) intake. Little has been studied specifically on how SFE varies in these systems. The objective of this study was to quantify the magnitude and variation in SFE of growing beef cattle grazing stockpiled native Campos grasslands during winter and assess putative associations with herbage, animals, supplements, and climatic variables. We compiled data from supplementation trials carried out in Uruguay between 1993 and 2018, each evaluating between one and six supplementation treatments. The average ADG of unsupplemented and supplemented animals were 0.13â ±â 0.174 and 0.49â ±â 0.220 kg/animal/day, respectively. In both cases, ADG decreased linearly as the proportion of green herbage in the grazed grassland was lower, but the ADG of unsupplemented animals was further reduced when winter frosts were numerous. Estimated SFE were moderately high, with an average of 0.21â ±â 0.076 ADGchng/kg DM, resulting from average ADGchng of 0.38â ±â 0.180 kg/animal/day in response to an average supplementation rate of 1.84â ±â 0.68 kg supplement DM intake/animal/day (0.86% â ±â 0.27% body weight). No association was found between SFE and supplementation rate or type (protein vs. energy-based; Pâ >â 0.05), but forage allowance negatively affected it, and herbage mass positively affected it, yet in a smaller magnitude, suggesting that a balance is needed between the two to maximize SFE. Weather conditions during trials affected SFE (Pâ <â 0.05), with greater SFE in winters with lower temperatures and more frosts. Daytime grazing time was consistently lower in supplemented animals compared to their unsupplemented counterparts, whereas ruminating time during the day was similar, increasing as the proportion of green herbage decreased. Herbage intake estimated from energy balance suggested the existence of some substitution effect. This agrees with the moderately high SFE and with the total digestible nutrients-to-protein ratio of these subtropical humid grasslands being higher than in semi-arid rangelands and dry-season tropical pastures but lower than in sown pastures.
ABSTRACT
Andropogon lateralis is a tall and highly plastic tussock-forming grass native from southern South America. It is a frequent component of Campos and Subtropical highland grasslands that often becomes dominant under lax grazing regimes. The aim of this work was to analyze the response of species diversity and forage production of a natural grassland dominated by A. lateralis to a wide range of grazing intensity. We hypothesized that species diversity and forage production would both peak at the intermediate canopy heights determined by grazing regimes of moderate intensity. A grazing experiment was conducted in a highland grassland with mesothermal humid climate at 922 masl (Atlantic Forest biome, Santa Catarina state, Brazil) that comprised 87 species from 20 families but had 50% of its standing biomass accounted by A. lateralis. Four pre-/post-grazing canopy heights-12/7, 20/12, 28/17, and 36/22 cm (measured on A. lateralis)-were arranged in a complete randomized block design with four replications, and intermittently stocked with beef heifers from October 2015 to October 2017. Andropogon lateralis cover decreased (from 75 to 50%), and species richness increased (15-25 species m-2) as canopy height decreased. Grazing intensity did not affect annual forage production (4.2 Mg DM ha-1). This natural grassland dominated by A. lateralis had a high capacity to adjust to grazing regimes of contrasting intensity, maintaining forage production stable over a wide range of canopy heights. However, to prevent losses in floristic diversity, such grassland should not be grazed at canopy heights higher than 28 cm.
ABSTRACT
We investigated 2 outbreaks of osteomalacia as a result of phosphorus (P) deficiency in herds of lactating beef cows grazing subtropical native pastures in Uruguay. Cows exhibited pica, difficulty to stand and walk, rib fractures, and body weight loss even with adequate forage availability. Osteopenia and severe osteomalacia were observed on gross and histologic examination. The concentrations of bicarbonate-extractable P in soil (4.0, 4.1 mg P/kg), total P in pasture (0.9, 1.1 g P/kg), inorganic P in serum (1.0, 0.71 mmol P/L), and P in bone (73 mg P/mL) were all low. Although injectable and mineral salt supplements provided additional P in both outbreaks, these supplementary amounts were insufficient to prevent P deficiency. The P ingested by the cows from the pasture and supplements would have provided 20-55% of their daily P requirements of ~21 g P/d. Osteomalacia occurred in cattle at the 2 ranches as a result of severe P deficiency in the soil and forage, and inadequate P supplementation. Following diagnosis, control of P deficiency in beef cattle requires estimation of the amount of pasture P ingested and provision of sufficient additional supplementary P to meet the animals' requirements.