Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Polym Sci ; 140(5): e53406, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-37034442

ABSTRACT

During the global spread of COVID-19, high demand and limited availability of melt-blown filtration material led to a manufacturing backlog of N95 Filtering Facepiece Respirators (FFRs). This shortfall prompted the search for alternative filter materials that could be quickly mass produced while meeting N95 FFR filtration and breathability performance standards. Here, an unsupported, nonwoven layer of uncharged polystyrene (PS) microfibers was produced via electrospinning that achieves N95 performance standards based on physical parameters (e.g., filter thickness) alone. PS microfibers 3-6 µm in diameter and deposited in an ~5 mm thick filter layer are favorable for use in FFRs, achieving high filtration efficiencies (≥97.5%) and low pressure drops (≤15 mm H2O). The PS microfiber filter demonstrates durability upon disinfection with hydroxyl radicals (•OH), maintaining high filtration efficiencies and low pressure drops over six rounds of disinfection. Additionally, the PS microfibers exhibit antibacterial activity (1-log removal of E. coli) and can be modified readily through integration of silver nanoparticles (AgNPs) during electrospinning to enhance their activity (≥3-log removal at 25 wt% AgNP integration). Because of their tunable performance, potential reusability with disinfection, and antimicrobial properties, these electrospun PS microfibers may represent a suitable, alternative filter material for use in N95 FFRs.

2.
ACS Appl Mater Interfaces ; 11(37): 33913-33922, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31436952

ABSTRACT

The widespread environmental occurrence of per- and polyfluoroalkyl substances (PFAS) has attracted significant regulatory, research, and media attention because of their toxicity, recalcitrance, and ability to bioaccumulate. Perfluorooctane sulfonate (PFOS) is a particularly troublesome member of the PFAS family due to its immunity to biological remediation and radical-based oxidation. In the present study, we present a heterogeneous reductive degradation process that couples direct electron transfer (ET) from surface-modified carbon nanotube electrodes (under low potential conditions) to sorbed PFOS molecules using UV-generated hydrated electrons without any further chemical addition. We demonstrate that the ET process dramatically increases the PFOS defluorination rate while yielding shorter chain (C3-C7) perfluorinated acids and present both experimental and ab initio evidence of the synergistic relationship between electron addition to sorbed molecules and their ability to react with reductive hydrated electrons. Because of the low energy consumption associated with the ET process, the use of standard medium-pressure UV lamps and no further chemical addition, this reductive degradation process is a promising method for the destruction of persistent organic pollutants, including PFAS and other recalcitrant halogenated organic compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...