Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Vis Exp ; (188)2022 10 17.
Article in English | MEDLINE | ID: mdl-36314795

ABSTRACT

This article describes the fabrication and operation of microfluidic acoustophoretic chips using a microfluidic acoustophoresis technique and aptamer-modified microbeads that can be used for the fast, efficient isolation of Gram-negative bacteria from a medium. This method enhances the separation efficiency using a mix of long, square microchannels. In this system, the sample and buffer are injected into the inlet port through a flow controller. For bead centering and sample separation, AC power is applied to the piezoelectric transducer via a function generator with a power amplifier to generate acoustic radiation force in the microchannel. There is a bifurcated channel at both the inlet and outlet, enabling simultaneous separation, purification, and concentration. The device has a recovery rate of >98% and purity of 97.8% up to a 10x dose concentration. This study has demonstrated a recovery rate and purity higher than the existing methods for separating bacteria, suggesting that the device can separate bacteria efficiently.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Microfluidic Analytical Techniques/methods , Microspheres , Gram-Negative Bacteria , Cell Separation/methods
2.
Mikrochim Acta ; 189(9): 331, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35969307

ABSTRACT

Flow cytometry has become an indispensable tool for counting, analyzing, and sorting large cell populations in biological research and medical practice. Unfortunately, it has limitations in the analysis of non-spherically shaped cells due to the variation of their alignment with respect to the flow direction and, hence, the optical interrogation axis, resulting in unreliable cell analysis. Here, we present a simple on-chip acoustofluidic method to fix the orientation of ellipsoidal cells and focus them into a single, aligned stream. Specifically, by generating acoustic standing waves inside a 100 ⋅ 100 µm square-shaped microchannel, we successfully aligned and focused up to 97.7% of a population of Euglena gracilis (an ellipsoidal shaped microalgal species) cells in the center of the microchannel with high precision at a volume rate of 25 to 200 µL min-1. Uniform positioning of ellipsoidal cells is essential for making flow cytometry applicable to the investigation of a greater variety of cell populations and is expected to be beneficial for ecological studies and aquaculture.


Subject(s)
Euglena gracilis , Acoustics , Flow Cytometry/methods
3.
J Vis Exp ; (180)2022 02 01.
Article in English | MEDLINE | ID: mdl-35188137

ABSTRACT

The present article introduces a method for fabricating and operating a pneumatic valve to control particle concentration using a microfluidic platform. This platform has a three-dimensional (3D) network with curved fluid channels and three pneumatic valves, which create networks, channels, and spaces through duplex replication with polydimethylsiloxane (PDMS). The device operates based on the transient response of a fluid flow rate controlled by a pneumatic valve in the following order: (1) sample loading, (2) sample blocking, (3) sample concentration, and (4) sample release. The particles are blocked by thin diaphragm layer deformation of the sieve valve (Vs) plate and accumulate in the curved microfluidic channel. The working fluid is discharged by the actuation of two on/off valves. As a result of the operation, all particles of various magnifications were successfully intercepted and disengaged. When this technology is applied, the operating pressure, the time required for concentration, and the concentration rate may vary depending on the device dimensions and particle size magnification.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Microfluidic Analytical Techniques/methods , Particle Size
4.
Micromachines (Basel) ; 10(11)2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31718045

ABSTRACT

Here, we report a simple and effective method for capturing and displacement of gram-negative bacteria using aptamer-modified microbeads and acoustophoresis. As acoustophoresis allows for simultaneous washing and size-dependent separation in continuous flow mode, we efficiently obtained gram-negative bacteria that showed high affinity without any additional washing steps. The proposed device has a simple and efficient channel design, utilizing a long, square-shaped microchannel that shows excellent separation performance in terms of the purity, recovery, and concentration factor. Microbeads (10 µm) coated with the GN6 aptamer can specifically bind gram-negative bacteria. After incubation of bacteria culture sample with aptamer affinity bead, gram-negative bacteria-bound microbeads, and other unbound/contaminants can be separated by size with high purity and recovery. The device demonstrated excellent separation performance, with high recovery (up to 98%), high purity (up to 99%), and a high-volume rate (500 µL/min). The acoustophoretic separation performances were conducted using 5 Gram-negative bacteria and 5 Gram-positive bacteria. Thanks to GN6 aptamer's binding affinity, aptamer affinity bead also showed binding affinity to multiple strains of gram-negative bacteria, but not to gram-positive bacteria. GN6 coated bead can capture Gram-negative bacteria but not Gram-positive bacteria. This study may present a different perspective in the field of early diagnosis in bacterial infectious diseases. In addition to detecting living bacteria or bacteria-derived biomarkers, this protocol can be extended to monitoring the contamination of water resources and may aid quick responses to bioterrorism and pathogenic bacterial infections.

5.
Micromachines (Basel) ; 11(1)2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31905683

ABSTRACT

We developed a microfluidic platform employing (normally open) pneumatic valves for particle concentration. The device features a three-dimensional network with a curved fluidic channel and three pneumatic valves (a sieve valve (Vs) that concentrates particles and two ON/OFF rubber-seal pneumatic valves that block the working fluid). Double-sided replication employing polydimethylsiloxane (PDMS) was used to fabricate the network, channel, and chamber. Particles were blocked by deformation of the Vs diaphragm, and then accumulated in the curved microfluidic channel. The working fluid was discharged via operation of the two ON/OFF valves. After concentration, particles were released to an outlet port. The Vs pressure required to block solid particles varying in diameter was determined based on the height of the curved microchannel and a finite element method (FEM) simulation of Vs diaphragm displacement. Our method was verified according to the temporal response of the fluid flow rate controlled by the pneumatic valves. Furthermore, all particles with various diameters were successfully blocked, accumulated, and released. The operating pressure, time required for concentration, and concentration ratio were dependent on the particle diameter. The estimated concentration percentage of 24.9 µm diameter polystyrene particles was about 3.82% for 20 min of operation.

6.
J Vis Exp ; (141)2018 11 14.
Article in English | MEDLINE | ID: mdl-30507904

ABSTRACT

Droplet-based microfluidics enable the reliable production of homogeneous microspheres in the microfluidic channel, providing controlled size and morphology of the obtained microsphere. A microsphere copolymerized with an acrydite-DNA probe was successfully fabricated. Different methods such as asymmetric PCR, exonuclease digestion, and isolation on streptavidin-coated magnetic beads can be used to synthesize single-stranded DNA (ssDNA). However, these methods cannot efficiently use large amounts of highly purified ssDNA. Here, we describe a microsphere-PCR protocol detailing how ssDNA can be efficiently amplified and separated from dsDNA simply by pipetting from a PCR reaction tube. The amplification of ssDNA can be applied as potential reagents for the DNA microarray and DNA-SELEX (Systematic evolution of ligands by exponential enrichment) processes.


Subject(s)
DNA, Single-Stranded/isolation & purification , Microfluidics/methods , Microspheres , Polymerase Chain Reaction/methods , DNA Probes , Polymerization , SELEX Aptamer Technique/methods , Streptavidin
7.
ACS Comb Sci ; 20(8): 472-481, 2018 08 13.
Article in English | MEDLINE | ID: mdl-30011183

ABSTRACT

Apple Scar Skin Viroid (ASSVd), a nonprotein coding, circular RNA pathogen is relatively difficult to detect by immunoassay. We report here a one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay to improve selectivity for diagnostic use in detecting ASSVd in plants. ASSVd RT-LAMP was accelerated using loop primers and was found to be highly sensitive with a detection limit of 104 copies of cDNA-ASSVd within 30 min. Real-time LAMP and melting curve analysis could differentiate between the true-positive LAMP amplicons and false-positive nonspecific primer amplification products. The optimized RT-LAMP was then followed by the addition of nonthiolated AuNP:poly-adenine (A10)-ASSVd LAMP barcodes, showing a high authentication capacity with colorimetric changes. This type of barcoding assay is a potential alternative for rapid and multiple viroid diagnosis, providing for visible sensing in the field that can be applied to viroid-free planting.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA, Viral/analysis , Malus/virology , Plant Diseases/virology , Plant Viruses/isolation & purification , Poly A/chemistry , Gold/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Nucleic Acid Amplification Techniques/methods , Plant Leaves/virology , Sensitivity and Specificity , Time Factors
8.
Colloids Surf B Biointerfaces ; 170: 266-272, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29935420

ABSTRACT

Spontaneous wrinkling of a polydimethylsiloxane (PDMS) surface was induced by repeated thermal shrinkage of liquid PDMS coated onto a cured PDMS layer. We investigated and evaluated the potential of the resulting surface as a cell culture substrate by monitoring the viability, spreading area, and proliferation rate of MG-63 cells cultured on native, wrinkled, and poly-L-lysine (PLL)-coated PDMS surfaces. Cells seeded on the wrinkled and PLL-coated PDMS surfaces spread and adhered better than those on native surfaces. The numbers of attached cells growing on wrinkled and PLL-coated PDMS surfaces were higher than those of cells on a native PDMS surface. The spreading area of cells on the wrinkled surface was similar to that of cells on the PLL-coated surface, and was much larger than that on native PDMS. The proliferation rate of cells on the wrinkled surface was more than double that of cells on native PDMS. Reverse-transcription polymerase chain reaction (RT-PCR) analysis of integrin mRNA expression showed that cells on the wrinkled surface were more tightly attached due to higher expression of the protein than exhibited in cells on native PDMS. Thus, the novel findings of this study are that the induction of a wrinkled PDMS surface through a simple curing process produces a suitable cell culture substrate without need of surface modification, and that its effectiveness is comparable to that of a PLL-coated PDMS surface.


Subject(s)
Cell Culture Techniques/methods , Dimethylpolysiloxanes/chemistry , Dimethylpolysiloxanes/pharmacology , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Particle Size , Surface Properties
9.
Anal Sci ; 34(3): 317-321, 2018.
Article in English | MEDLINE | ID: mdl-29526899

ABSTRACT

Here, we report a sol-gel integrated affinity microarray for on-chip matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) that enables capture and identification of prostate?specific antigen (PSA) in samples. An anti-PSA antibody (H117) was mixed with a sol?gel, and the mixture was spotted onto a porous silicon (pSi) surface without additional surface modifications. The antibody easily penetrates the sol-gel macropore fluidic network structure, making possible high affinities. To assess the capture affinity of the platform, we performed a direct assay using fluorescein isothiocyanate-labeled PSA. Pure PSA was subjected to on-chip MALDI-TOF-MS analysis, yielding three clear mass peptide peaks (m/z = 1272, 1407, and 1872). The sol-gel microarray platform enables dual readout of PSA both fluorometric and MALDI-TOF MS analysis in biological samples. Here we report a useful method for a means for discovery of biomarkers in complex body fluids.


Subject(s)
Microarray Analysis/instrumentation , Prostate-Specific Antigen/analysis , Gels , Prostate-Specific Antigen/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Trypsin/metabolism
10.
Mol Cells ; 39(11): 807-813, 2016 Nov 30.
Article in English | MEDLINE | ID: mdl-27871171

ABSTRACT

Escherichia coli are important indicator organisms, used routinely for the monitoring of water and food safety. For quick, sensitive and real-time detection of E. coli we developed a 2'F modified RNA aptamer Ec3, by Cell-SELEX. The 31 nucleotide truncated Ec3 demonstrated improved binding and low nano-molar affinity to E. coli. The aptamer developed by us out-performs the commercial antibody and aptamer used for E. coli detection. Ec3(31) aptamer based E. coli detection was done using three different detection formats and the assay sensitivities were determined. Conventional Ec3(31)-biotin-streptavidin magnetic separation could detect E. coli with a limit of detection of 1.3 × 106 CFU/ml. Although, optical analytic technique, biolayer interferometry, did not improve the sensitivity of detection for whole cells, a very significant improvement in the detection was seen with the E. coli cell lysate (5 × 104 CFU/ml). Finally we developed Electrochemical Impedance Spectroscopy (EIS) gap capacitance biosensor that has detection limits of 2 × 104 CFU/mL of E. coli cells, without any labeling and signal amplification techniques. We believe that our developed method can step towards more complex and real sample application.


Subject(s)
Aptamers, Nucleotide/genetics , Biosensing Techniques/methods , Escherichia coli/genetics , RNA/genetics , SELEX Aptamer Technique/methods , Aptamers, Nucleotide/chemistry , RNA/chemistry
11.
PLoS One ; 11(7): e0159777, 2016.
Article in English | MEDLINE | ID: mdl-27447941

ABSTRACT

We fabricated droplet-based microfluidic platform for copolymerizable microspheres with acrydite modified DNA probe. The copolymerizable 3-D polyacrylamide microspheres were successfully produced from microcontinuous-flow synthesis with on-channel solidification. DNA copolymerization activity, surface presentation and thermostability were assessed by using fluorescent labeled complementary probe. The binding performance was only visible on the surface area of oligo-microspheres. We show that the resulting oligo-microspheres can be directly integrated into a streamlined microsphere-PCR protocol for amplifying ssDNA. Our microspheres could be utilized as a potential material for ssDNA analysis such as DNA microarray and automatic DNA SELEX process.


Subject(s)
DNA, Single-Stranded , Microfluidics , Microspheres , Oligonucleotide Probes , DNA Probes , DNA Replication , Microfluidics/instrumentation , Microfluidics/methods , Polymerization
12.
Sensors (Basel) ; 15(5): 11972-87, 2015 May 22.
Article in English | MEDLINE | ID: mdl-26007739

ABSTRACT

Levels of total human kallikrein 2 (hK2), a protein involved the pathology of prostate cancer (PCa), could be used as a biomarker to aid in the diagnosis of this disease. In this study, we report on a porous silicon antibody immunoassay platform for the detection of serum levels of total hK2. The surface of porous silicon has a 3-dimensional macro- and nanoporous structure, which offers a large binding capacity for capturing probe molecules. The tailored pore size of the porous silicon also allows efficient immobilization of antibodies by surface adsorption, and does not require chemical immobilization. Monoclonal hK2 capture antibody (6B7) was dispensed onto P-Si chip using a piezoelectric dispenser. In total 13 × 13 arrays (169 spots) were spotted on the chip with its single spot volume of 300 pL. For an optimization of capture antibody condition, we firstly performed an immunoassay of the P-Si microarray under a titration series of hK2 in pure buffer (PBS) at three different antibody densities (75, 100 and 145 µg/mL). The best performance of the microarray platform was seen at 100 µg/mL of the capture antibody concentration (LOD was 100 fg/mL). The platform then was subsequently evaluated for a titration series of serum-spiked hK2 samples. The developed platform utilizes only 15 µL of serum per test and the total assay time is about 3 h, including immobilization of the capture antibody. The detection limit of the hK2 assay was 100 fg/mL in PBS buffer and 1 pg/mL in serum with a dynamic range of 106 (10(-4) to 10(2) ng/mL).


Subject(s)
Immunoassay/instrumentation , Prostatic Neoplasms/diagnosis , Silicon/chemistry , Tissue Kallikreins/analysis , Biomarkers, Tumor/analysis , Equipment Design , Humans , Immunoassay/methods , Male , Microarray Analysis , Porosity
13.
Anal Chim Acta ; 796: 108-14, 2013 Sep 24.
Article in English | MEDLINE | ID: mdl-24016590

ABSTRACT

Enriching the surface density of immobilized capture antibodies enhances the detection signal of antibody sandwich microarrays. In this study, we improved the detection sensitivity of our previously developed P-Si (porous silicon) antibody microarray by optimizing concentrations of the capturing antibody. We investigated immunoassays using a P-Si microarray at three different capture antibody (PSA - prostate specific antigen) concentrations, analyzing the influence of the antibody density on the assay detection sensitivity. The LOD (limit of detection) for PSA was 2.5 ng mL(-1), 80 pg mL(-1), and 800 fg mL(-1) when arraying the PSA antibody, H117 at the concentration 15 µg mL(-1), 35 µg mL(-1), and 154 µg mL(-1), respectively. We further investigated PSA spiked into human female serum in the range of 800 fg mL(-1) to 500 ng mL(-1). The microarray showed a LOD of 800 fg mL(-1) and a dynamic range of 800 fg mL(-1) to 80 ng mL(-1) in serum spiked samples.


Subject(s)
Immunoassay/instrumentation , Prostate-Specific Antigen/blood , Protein Array Analysis/instrumentation , Silicon/chemistry , Antibodies, Immobilized/chemistry , Equipment Design , Female , Humans , Limit of Detection , Male , Porosity
14.
Anal Chem ; 84(6): 2647-53, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-22283623

ABSTRACT

This paper reports for the first time the application of sol-gel microarrays for immobilizing nonsoluble small chemicals (Bisphenol-A; BPA). Also, known problems of sol-gel adhesion to conventional microtiter well plate substrates are circumvented by anchoring the sol-gel microspots to a porous silion surface so-called, PS-SG chips. We confirmed low molecular weight chemical immobilization inside a sol-gel network using fluorescein. BPA and the BPA specific aptamer were utilized as a model pair to verify the affinity specific interaction in the PS-SG selection system. The aptamer interacted specifically with BPA in the sol-gel spots, as shown in microarrays forming the letters "L", "U", "N", and "D". Moreover, the bound aptamer was released by heat, recovered, and verified by gel electrophoresis. The developed PS-SG chip platform will be used for screening aptamers against numerous small molecules such as toxins, metabolites, or pesticide residues.


Subject(s)
Aptamers, Nucleotide/chemistry , Gels/chemistry , Microarray Analysis/instrumentation , Benzhydryl Compounds , Equipment Design , Phase Transition , Phenols/chemistry , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...