Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Mol Cancer ; 23(1): 121, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853277

ABSTRACT

BACKGROUND: Platinum resistance is the primary cause of poor survival in ovarian cancer (OC) patients. Targeted therapies and biomarkers of chemoresistance are critical for the treatment of OC patients. Our previous studies identified cell surface CD55, a member of the complement regulatory proteins, drives chemoresistance and maintenance of cancer stem cells (CSCs). CSCs are implicated in tumor recurrence and metastasis in multiple cancers. METHODS: Protein localization assays including immunofluorescence and subcellular fractionation were used to identify CD55 at the cell surface and nucleus of cancer cells. Protein half-life determinations were used to compare cell surface and nuclear CD55 stability. CD55 deletion mutants were generated and introduced into cancer cells to identify the nuclear trafficking code, cisplatin sensitivity, and stem cell frequency that were assayed using in vitro and in vivo models. Detection of CD55 binding proteins was analyzed by immunoprecipitation followed by mass spectrometry. Target pathways activated by CD55 were identified by RNA sequencing. RESULTS: CD55 localizes to the nucleus of a subset of OC specimens, ascites from chemoresistant patients, and enriched in chemoresistant OC cells. We determined that nuclear CD55 is glycosylated and derived from the cell surface pool of CD55. Nuclear localization is driven by a trafficking code containing the serine/threonine (S/T) domain of CD55. Nuclear CD55 is necessary for cisplatin resistance, stemness, and cell proliferation in OC cells. CD55 S/T domain is necessary for nuclear entry and inducing chemoresistance to cisplatin in both in vitro and in vivo models. Deletion of the CD55 S/T domain is sufficient to sensitize chemoresistant OC cells to cisplatin. In the nucleus, CD55 binds and attenuates the epigenetic regulator and tumor suppressor ZMYND8 with a parallel increase in H3K27 trimethylation and members of the Polycomb Repressive Complex 2. CONCLUSIONS: For the first time, we show CD55 localizes to the nucleus in OC and promotes CSC and chemoresistance. Our studies identify a therapeutic mechanism for treating platinum resistant ovarian cancer by blocking CD55 nuclear entry.


Subject(s)
CD55 Antigens , Cell Nucleus , Chromatin , Cisplatin , Drug Resistance, Neoplasm , Histones , Neoplastic Stem Cells , Ovarian Neoplasms , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Female , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/drug effects , Animals , Mice , CD55 Antigens/metabolism , CD55 Antigens/genetics , Cell Line, Tumor , Histones/metabolism , Cell Nucleus/metabolism , Chromatin/metabolism , Methylation , Xenograft Model Antitumor Assays , Antineoplastic Agents/pharmacology , Protein Transport
2.
Semin Hematol ; 61(1): 51-60, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38431463

ABSTRACT

Loss of function TET2 mutation (TET2MT) is one of the most frequently observed lesions in clonal hematopoiesis (CH). TET2 a member TET-dioxygenase family of enzymes that along with TET1 and TET3, progressively oxidize 5-methyl cytosine (mC) resulting in regulated demethylation of promoter, enhancer and silencer elements of the genome. This process is critical for efficient transcription that determine cell lineage fate, proliferation and survival and the maintenance of the genomic fidelity with aging of the organism. Partial or complete loss-of-function TET2 mutations create regional and contextual DNA hypermethylation leading to gene silencing or activation that result in skewed myeloid differentiation and clonal expansion. In addition to myeloid skewing, loss of TET2 creates differentiation block and provides proliferative advantage to hematopoietic stem and progenitor cells (HSPCs). TET2MT is a prototypical lesion in CH, since the mutant clones dominate during stress hematopoiesis and often associates with evolution of myeloid malignancies. TET2MT clones has unique privilege to create and persist in pro-inflammatory milieu. Despite extensive knowledge regarding biochemical mechanisms underlying distorted myeloid differentiation, and enhanced self-replication of TET2MT HSPC, the mechanistic link of various pathogenesis associated with TET2 loss in CHIP is less understood. Here we review the recent development in TET2 biology and its probable mechanistic link in CH with aging and inflammation. We also explored the therapeutic strategies of targeting TET2MT associated CHIP and the utility of targeting TET2 in normal hematopoiesis and somatic cell reprograming. We explore the biochemical mechanisms and candidate therapies that emerged in last decade of research.


Subject(s)
Clonal Hematopoiesis , Dioxygenases , Humans , Clonal Hematopoiesis/genetics , Mutation , DNA Methylation , Cell Differentiation/genetics , Hematopoiesis/genetics , Mixed Function Oxygenases/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases/genetics
3.
Nat Commun ; 15(1): 1832, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418452

ABSTRACT

PHF6 mutations (PHF6MT) are identified in various myeloid neoplasms (MN). However, little is known about the precise function and consequences of PHF6 in MN. Here we show three main findings in our comprehensive genomic and proteomic study. Firstly, we show a different pattern of genes correlating with PHF6MT in male and female cases. When analyzing male and female cases separately, in only male cases, RUNX1 and U2AF1 are co-mutated with PHF6. In contrast, female cases reveal co-occurrence of ASXL1 mutations and X-chromosome deletions with PHF6MT. Next, proteomics analysis reveals a direct interaction between PHF6 and RUNX1. Both proteins co-localize in active enhancer regions that define the context of lineage differentiation. Finally, we demonstrate a negative prognostic role of PHF6MT, especially in association with RUNX1. The negative effects on survival are additive as PHF6MT cases with RUNX1 mutations have worse outcomes when compared to cases carrying single mutation or wild-type.


Subject(s)
Leukemia, Myeloid, Acute , Neoplasms , Humans , Male , Female , Repressor Proteins/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Proteomics , Mutation , Leukemia, Myeloid, Acute/genetics
4.
Viruses ; 15(7)2023 07 13.
Article in English | MEDLINE | ID: mdl-37515225

ABSTRACT

Viral replication often depends on RNA maturation and degradation processes catalyzed by viral ribonucleases, which are therefore candidate targets for antiviral drugs. Here, we synthesized and studied the antiviral properties of a novel nitrocatechol compound (1c) and other analogs that are structurally related to the catechol derivative dynasore. Interestingly, compound 1c strongly inhibited two DEDD box viral ribonucleases, HIV-1 RNase H and SARS-CoV-2 nsp14 3'-to-5' exoribonuclease (ExoN). While 1c inhibited SARS-CoV-2 ExoN activity, it did not interfere with the mRNA methyltransferase activity of nsp14. In silico molecular docking placed compound 1c in the catalytic pocket of the ExoN domain of nsp14. Finally, 1c inhibited SARS-CoV-2 replication but had no toxicity to human lung adenocarcinoma cells. Given its simple chemical synthesis from easily available starting materials, these results suggest that 1c might be a lead compound for the design of new antiviral compounds that target coronavirus nsp14 ExoN and other viral ribonucleases.


Subject(s)
COVID-19 , HIV-1 , Humans , SARS-CoV-2/genetics , Exoribonucleases/genetics , HIV-1/genetics , Molecular Docking Simulation , Antiviral Agents/pharmacology , Virus Replication , Catechols/pharmacology , Ribonuclease H/pharmacology , Viral Nonstructural Proteins/genetics , RNA, Viral/genetics
5.
iScience ; 25(10): 104931, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36157589

ABSTRACT

Hypomethylating agents (HMA) prolong survival and improve cytopenias in individuals with higher-risk myelodysplastic syndrome (MDS). Only 30-40% of patients, however, respond to HMAs, and responses may not occur for more than 6 months after HMA initiation. We developed a model to more rapidly assess HMA response by analyzing early changes in patients' blood counts. Three institutions' data were used to develop a model that assessed patients' response to therapy 90 days after the initiation using serial blood counts. The model was developed with a training cohort of 424 patients from 2 institutions and validated on an independent cohort of 90 patients. The final model achieved an area under the receiver operating characteristic curve (AUROC) of 0.79 in the train/test group and 0.84 in the validation group. The model provides cohort-wide and individual-level explanations for model predictions, and model certainty can be interrogated to gauge the reliability of a given prediction.

6.
Cancers (Basel) ; 14(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36077618

ABSTRACT

Multiple myeloma (MM) is a complex hematologic malignancy characterized by the uncontrolled proliferation of clonal plasma cells in the bone marrow that secrete large amounts of immunoglobulins and other non-functional proteins. Despite decades of progress and several landmark therapeutic advancements, MM remains incurable in most cases. Standard of care frontline therapies have limited durable efficacy, with the majority of patients eventually relapsing, either early or later. Induced drug resistance via up-modulations of signaling cascades that circumvent the effect of drugs and the emergence of genetically heterogeneous sub-clones are the major causes of the relapsed-refractory state of MM. Cytopenias from cumulative treatment toxicity and disease refractoriness limit therapeutic options, hence creating an urgent need for innovative approaches effective against highly heterogeneous myeloma cell populations. Here, we present a comprehensive overview of the current and future treatment paradigm of MM, and highlight the gaps in therapeutic translations of recent advances in targeted therapy and immunotherapy. We also discuss the therapeutic potential of emerging preclinical research in multiple myeloma.

7.
Leukemia ; 36(8): 2086-2096, 2022 08.
Article in English | MEDLINE | ID: mdl-35761024

ABSTRACT

Myeloperoxidase (MPO) gene alterations with variable clinical penetrance have been found in hereditary MPO deficiency, but their leukemia association in patients and carriers has not been established. Germline MPO alterations were found to be significantly enriched in myeloid neoplasms: 28 pathogenic/likely pathogenic variants were identified in 100 patients. The most common alterations were c.2031-2 A > C, R569W, M519fs* and Y173C accounting for about half of the cases. While functional experiments showed that the marrow stem cell pool of Mpo-/- mice was not increased, using competitive repopulation demonstrated that Mpo-/- grafts gained growth advantage over MPO wild type cells. This finding also correlated with increased clonogenic potential after serial replating in the setting of H2O2-induced oxidative stress. Furthermore, we demonstrated that H2O2-induced DNA damage and activation of error-prone DNA repair may result in secondary genetic damage potentially predisposing to leukemia leukemic evolution. In conclusion, our study for the first time demonstrates that germline MPO variants may constitute risk alleles for MN evolution.


Subject(s)
Leukemia , Myeloproliferative Disorders , Neoplasms , Animals , Germ Cells/metabolism , Humans , Hydrogen Peroxide/pharmacology , Leukemia/genetics , Mice , Peroxidase/genetics , Peroxidase/metabolism
8.
Nutrients ; 14(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35406143

ABSTRACT

Radiation therapy damages and depletes total bone marrow (BM) cellularity, compromising safety and limiting effective dosing. Aging also strains total BM and BM hematopoietic stem and progenitor cell (HSPC) renewal and function, resulting in multi-system defects. Interventions that preserve BM and BM HSPC homeostasis thus have potential clinical significance. Here, we report that 50% calorie restriction (CR) for 7-days or fasting for 3-days prior to irradiation improved mouse BM regrowth in the days and weeks post irradiation. Specifically, one week of 50% CR ameliorated loss of total BM cellularity post irradiation compared to ad libitum-fed controls. CR-mediated BM protection was abrogated by dietary sulfur amino acid (i.e., cysteine, methionine) supplementation or pharmacological inhibition of sulfur amino acid metabolizing and hydrogen sulfide (H2S) producing enzymes. Up to 2-fold increased proliferative capacity of ex vivo-irradiated BM isolated from food restricted mice relative to control mice indicates cell autonomy of the protective effect. Pretreatment with H2S in vitro was sufficient to preserve proliferative capacity by over 50% compared to non-treated cells in ex vivo-irradiated BM and BM HSPCs. The exogenous addition of H2S inhibited Ten eleven translocation 2 (TET2) activity in vitro, thus providing a potential mechanism of action. Short-term CR or fasting therefore offers BM radioprotection and promotes regrowth in part via altered sulfur amino acid metabolism and H2S generation, with translational implications for radiation treatment and aging.


Subject(s)
Hydrogen Sulfide , Radiation Injuries , Animals , Bone Marrow/metabolism , Caloric Restriction , Dietary Supplements , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , Methionine/pharmacology , Mice , Mice, Inbred C57BL , Radiation, Ionizing
9.
Nat Commun ; 13(1): 1038, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35210415

ABSTRACT

Although recent work has described the microbiome in solid tumors, microbial content in hematological malignancies is not well-characterized. Here we analyze existing deep DNA sequence data from the blood and bone marrow of 1870 patients with myeloid malignancies, along with healthy controls, for bacterial, fungal, and viral content. After strict quality filtering, we find evidence for dysbiosis in disease cases, and distinct microbial signatures among disease subtypes. We also find that microbial content is associated with host gene mutations and with myeloblast cell percentages. In patients with low-risk myelodysplastic syndrome, we provide evidence that Epstein-Barr virus status refines risk stratification into more precise categories than the current standard. Motivated by these observations, we construct machine-learning classifiers that can discriminate among disease subtypes based solely on bacterial content. Our study highlights the association between the circulating microbiome and patient outcome, and its relationship with disease subtype.


Subject(s)
Epstein-Barr Virus Infections , Microbiota , Myeloproliferative Disorders , Bacteria/genetics , Dysbiosis/microbiology , Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human/genetics , Humans , Microbiota/genetics
10.
J Clin Invest ; 132(4)2022 02 15.
Article in English | MEDLINE | ID: mdl-35085104

ABSTRACT

Eltrombopag, an FDA-approved non-peptidyl thrombopoietin receptor agonist, is clinically used for the treatment of aplastic anemia, a disease characterized by hematopoietic stem cell failure and pancytopenia, to improve platelet counts and stem cell function. Eltrombopag treatment results in a durable trilineage hematopoietic expansion in patients. Some of the eltrombopag hematopoietic activity has been attributed to its off-target effects, including iron chelation properties. However, the mechanism of action for its full spectrum of clinical effects is still poorly understood. Here, we report that eltrombopag bound to the TET2 catalytic domain and inhibited its dioxygenase activity, which was independent of its role as an iron chelator. The DNA demethylating enzyme TET2, essential for hematopoietic stem cell differentiation and lineage commitment, is frequently mutated in myeloid malignancies. Eltrombopag treatment expanded TET2-proficient normal hematopoietic stem and progenitor cells, in part because of its ability to mimic loss of TET2 with simultaneous thrombopoietin receptor activation. On the contrary, TET inhibition in TET2 mutant malignant myeloid cells prevented neoplastic clonal evolution in vitro and in vivo. This mechanism of action may offer a restorative therapeutic index and provide a scientific rationale to treat selected patients with TET2 mutant-associated or TET deficiency-associated myeloid malignancies.


Subject(s)
Anemia, Aplastic , Benzoates/pharmacology , Cell Proliferation , DNA-Binding Proteins , Dioxygenases , Hematopoietic Stem Cells/enzymology , Hydrazines/pharmacology , Pyrazoles/pharmacology , Anemia, Aplastic/drug therapy , Anemia, Aplastic/genetics , Anemia, Aplastic/metabolism , Animals , Cell Proliferation/drug effects , Cell Proliferation/genetics , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases/antagonists & inhibitors , Dioxygenases/genetics , Dioxygenases/metabolism , Humans , Mice , Mice, Knockout
11.
Blood Adv ; 6(1): 100-107, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34768283

ABSTRACT

Decrease in DNA dioxygenase activity generated by TET2 gene family is crucial in myelodysplastic syndromes (MDS). The general downregulation of 5-hydroxymethylcytosine (5-hmC) argues for a role of DNA demethylation in MDS beyond TET2 mutations, which albeit frequent, do not convey any prognostic significance. We investigated TETs expression to identify factors which can modulate the impact of mutations and thus 5-hmC levels on clinical phenotypes and prognosis of MDS patients. DNA/RNA-sequencing and 5-hmC data were collected from 1665 patients with MDS and 91 controls. Irrespective of mutations, a significant fraction of MDS patients exhibited lower TET2 expression, whereas 5-hmC levels were not uniformly decreased. In searching for factors explaining compensatory mechanisms, we discovered that TET3 was upregulated in MDS and inversely correlated with TET2 expression in wild-type cases. Although TET2 was reduced across all age groups, TET3 levels were increased in a likely feedback mechanism induced by TET2 dysfunction. This inverse relationship of TET2 and TET3 expression also corresponded to the expression of L-2-hydroxyglutarate dehydrogenase, involved in agonist/antagonist substrate metabolism. Importantly, elevated TET3 levels influenced the clinical phenotype of TET2 deficiency whereby the lack of compensation by TET3 (low TET3 expression) was associated with poor outcomes of TET2 mutant carriers.


Subject(s)
Dioxygenases , Myelodysplastic Syndromes , DNA , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases/genetics , Humans , Mutation , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
12.
Blood ; 138(26): 2781-2798, 2021 12 30.
Article in English | MEDLINE | ID: mdl-34748628

ABSTRACT

Idiopathic aplastic anemia (IAA) is a rare autoimmune bone marrow failure (BMF) disorder initiated by a human leukocyte antigen (HLA)-restricted T-cell response to unknown antigens. As in other autoimmune disorders, the predilection for certain HLA profiles seems to represent an etiologic factor; however, the structure-function patterns involved in the self-presentation in this disease remain unclear. Herein, we analyzed the molecular landscape of HLA complexes of a cohort of 300 IAA patients and almost 3000 healthy and disease controls by deeply dissecting their genotypic configurations, functional divergence, self-antigen binding capabilities, and T-cell receptor (TCR) repertoire specificities. Specifically, analysis of the evolutionary divergence of HLA genotypes (HED) showed that IAA patients carried class II HLA molecules whose antigen-binding sites were characterized by a high level of structural homology, only partially explained by specific risk allele profiles. This pattern implies reduced HLA binding capabilities, confirmed by binding analysis of hematopoietic stem cell (HSC)-derived self-peptides. IAA phenotype was associated with the enrichment in a few amino acids at specific positions within the peptide-binding groove of DRB1 molecules, affecting the interface HLA-antigen-TCR ß and potentially constituting the basis of T-cell dysfunction and autoreactivity. When analyzing associations with clinical outcomes, low HED was associated with risk of malignant progression and worse survival, underlying reduced tumor surveillance in clearing potential neoantigens derived from mechanisms of clonal hematopoiesis. Our data shed light on the immunogenetic risk associated with IAA etiology and clonal evolution and on general pathophysiological mechanisms potentially involved in other autoimmune disorders.


Subject(s)
Anemia, Aplastic/genetics , Genes, MHC Class II , HLA-D Antigens/genetics , Adult , Alleles , Cohort Studies , Female , Genotype , Humans , Male , Middle Aged
13.
Blood Adv ; 5(21): 4361-4369, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34592765

ABSTRACT

The differential diagnosis of myeloid malignancies is challenging and subject to interobserver variability. We used clinical and next-generation sequencing (NGS) data to develop a machine learning model for the diagnosis of myeloid malignancies independent of bone marrow biopsy data based on a 3-institution, international cohort of patients. The model achieves high performance, with model interpretations indicating that it relies on factors similar to those used by clinicians. In addition, we describe associations between NGS findings and clinically important phenotypes and introduce the use of machine learning algorithms to elucidate clinicogenomic relationships.


Subject(s)
Myelodysplastic Syndromes , Myeloproliferative Disorders , Bone Marrow , Diagnosis, Differential , High-Throughput Nucleotide Sequencing , Humans , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Myeloproliferative Disorders/diagnosis
14.
Cell Rep ; 36(12): 109747, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34551289

ABSTRACT

PBRM1, a subunit of the PBAF coactivator complex that transcription factors use to activate target genes, is genetically inactivated in almost all clear cell renal cell cancers (RCCs). Using unbiased proteomic analyses, we find that PAX8, a master transcription factor driver of proximal tubule epithelial fates, recruits PBRM1/PBAF. Reverse analyses of the PAX8 interactome confirm recruitment specifically of PBRM1/PBAF and not functionally similar BAF. More conspicuous in the PAX8 hub in RCC cells, however, are corepressors, which functionally oppose coactivators. Accordingly, key PAX8 target genes are repressed in RCC versus normal kidneys, with the loss of histone lysine-27 acetylation, but intact lysine-4 trimethylation, activation marks. Re-introduction of PBRM1, or depletion of opposing corepressors using siRNA or drugs, redress coregulator imbalance and release RCC cells to terminal epithelial fates. These mechanisms thus explain RCC resemblance to the proximal tubule lineage but with suppression of the late-epithelial program that normally terminates lineage-precursor proliferation.


Subject(s)
Carcinoma, Renal Cell/pathology , Cell Differentiation , DNA-Binding Proteins/metabolism , Kidney Tubules, Proximal/metabolism , PAX8 Transcription Factor/metabolism , Transcription Factors/metabolism , Animals , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Cell Proliferation , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , Histones/metabolism , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Kidney Tubules, Proximal/cytology , Male , Mice , Mice, Nude , Mutagenesis , PAX8 Transcription Factor/genetics , Protein Interaction Maps , RNA Interference , RNA, Small Interfering/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcriptional Activation , Transplantation, Heterologous
15.
JCI Insight ; 6(13)2021 07 08.
Article in English | MEDLINE | ID: mdl-34236054

ABSTRACT

TCR repertoire diversification constitutes a foundation for successful immune reconstitution after allogeneic hematopoietic cell transplantation (allo-HCT). Deep TCR Vß sequencing of 135 serial specimens from a cohort of 35 allo-HCT recipients/donors was performed to dissect posttransplant TCR architecture and dynamics. Paired analysis of clonotypic repertoires showed a minimal overlap with donor expansions. Rarefied and hyperexpanded clonotypic patterns were hallmarks of T cell reconstitution and influenced clinical outcomes. Donor and pretransplant TCR diversity as well as divergence of class I human leukocyte antigen genotypes were major predictors of recipient TCR repertoire recovery. Complementary determining region 3-based specificity spectrum analysis indicated a predominant expansion of pathogen- and tumor-associated clonotypes in the late post-allo-HCT phase, while autoreactive clones were more expanded in the case of graft-versus-host disease occurrence. These findings shed light on post-allo-HCT adaptive immune reconstitution processes and possibly help in tracking alloreactive responses.


Subject(s)
Adaptive Immunity , Complementarity Determining Regions/immunology , Graft vs Host Disease/immunology , HLA Antigens/immunology , Hematopoietic Stem Cell Transplantation , Receptors, Antigen, T-Cell, alpha-beta/immunology , Clone Cells/immunology , Epitopes , Genetic Profile , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Humans , Immune Reconstitution , Receptors, Antigen, T-Cell/immunology , Sequence Analysis, Protein , Transplantation, Homologous/adverse effects , Transplantation, Homologous/methods
16.
Cancers (Basel) ; 13(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071205

ABSTRACT

Multiple myeloma is a genetically complex hematologic neoplasia in which malignant plasma cells constantly operate at the maximum limit of their unfolded protein response (UPR) due to a high secretory burden of immunoglobulins and cytokines. The endoplasmic reticulum (ER) resident protein disulfide isomerase, PDIA1 is indispensable for maintaining structural integrity of cysteine-rich antibodies and cytokines that require accurate intramolecular disulfide bond arrangement. PDIA1 expression analysis from RNA-seq of multiple myeloma patients demonstrated an inverse relationship with survival in relapsed or refractory disease, supporting its critical role in myeloma persistence. Using a structure-guided medicinal chemistry approach, we developed a potent, orally bioavailable small molecule PDIA1 inhibitor CCF642-34. The inhibition of PDIA1 overwhelms the UPR in myeloma cells, resulting in their apoptotic cell death at doses that do not affect the normal CD34+ hematopoietic stem and progenitor cells. Bortezomib resistance leads to increased PDIA1 expression and thus CCF642-34 sensitivity, suggesting that proteasome inhibitor resistance leads to PDIA1 dependence for proteostasis and survival. CCF642-34 induces acute unresolvable UPR in myeloma cells, and oral treatment increased survival of mice in the syngeneic 5TGM1 model of myeloma. Results support development of CCF642-34 to selectively target the plasma cell program and overcome the treatment-refractory state in myeloma.

17.
Bioorg Med Chem ; 39: 116141, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33894507

ABSTRACT

The TET (Ten-Eleven Translocation) dioxygenase enzyme family comprising 3 members, TET1-3, play key roles in DNA demethylation. These processes regulate transcription programs that determine cell lineage, survival, proliferation, and differentiation. The impetus for our investigations described here is derived from the need to develop illuminating small molecule probes for TET enzymes with cellular activity and specificity. The studies were done so in the context of the importance of TET2 in the hematopoietic system and the preponderance of loss of function somatic TET2 mutations in myeloid diseases. We have identified that 2-hydroxy-4-methylene-pentanedicarboxylic acid 2a reversibly competes with the co-substrate α-KG in the TET2 catalytic domain and inhibits the dioxygenase activity with an IC50 = 11.0 ± 0.9 µM at 10 µM α-KG in a cell free system and binds in the TET2 catalytic domain with Kd = 0.3 ± 0.12 µM.


Subject(s)
Catalytic Domain/drug effects , DNA-Binding Proteins/metabolism , Dicarboxylic Acids/chemical synthesis , Dicarboxylic Acids/pharmacology , Dioxygenases/metabolism , Cell-Free System , DNA Methylation , Dicarboxylic Acids/chemistry , Humans , Molecular Docking Simulation , Spectrum Analysis/methods , Structure-Activity Relationship , THP-1 Cells
18.
Blood Cancer Discov ; 2(2): 146-161, 2021 03.
Article in English | MEDLINE | ID: mdl-33681816

ABSTRACT

TET2 is frequently mutated in myeloid neoplasms. Genetic TET2 deficiency leads to skewed myeloid differentiation and clonal expansion, but minimal residual TET activity is critical for survival of neoplastic progenitor and stem cells. Consistent with mutual exclusivity of TET2 and neomorphic IDH1/2 mutations, here we report that IDH1/2 mutant-derived 2-hydroxyglutarate is synthetically lethal to TET-dioxygenase deficient cells. In addition, a TET-selective small molecule inhibitor decreased cytosine hydroxymethylation and restricted clonal outgrowth of TET2 mutant, but not normal hematopoietic precursor cells in vitro and in vivo. While TET-inhibitor phenocopied somatic TET2 mutations, its pharmacologic effects on normal stem cells were, unlike mutations, reversible. Treatment with TET inhibitor suppressed the clonal evolution of TET2 mutant cells in murine models and TET2-mutated human leukemia xenografts. These results suggest that TET inhibitors may constitute a new class of targeted agents in TET2 mutant neoplasia.


Subject(s)
Dioxygenases , Leukemia , Animals , DNA-Binding Proteins/genetics , Hematopoiesis/genetics , Humans , Mice , Proto-Oncogene Proteins/genetics
19.
Semin Hematol ; 58(1): 1-3, 2021 01.
Article in English | MEDLINE | ID: mdl-33509437

ABSTRACT

A common thread through malignant and nonmalignant diseases alerts us to a therapeutic opportunity to seize: disease may originate from genetic mutations, but resulting maladaptive/unhealthy cell fates and functions are mediated by epigenetic enzymes, that are druggable. Epigenetic enzymes modify DNA, and/or the histones around which DNA is organized, to regulate access to genes by the basal transcription factor machinery that transcribes genes. Epigenetic enzymes can be divided usefully into those that facilitate gene transcription ("on" enzymes or coactivators) and those that favor gene repression ("off" enzymes or corepressors). DNA-binding master transcription factors cooperate to recruit coactivators, and repulse corepressors, from thousands of genes, to thereby activate the gene expression programs that define cell fates and functions. In malignancy, this usual exchange of corepressors for coactivators fails, because of mutations to master transcription factors or the coactivators they recruit. Inhibiting corepressor enzymes using small molecules uses pharmacology to redress this coactivator/corepressor imbalance that originates from genetics, to in this way release cancer cells to the terminal lineage-fates intended by their master transcription factor content. Similarly, in nonmalignant ß-hemoglobinopathies, inhibiting corepressors exploits transcription factor and lineage-context to activate unmutated fetal over mutated adult globin genes, to thereby treat these nonmalignant genetic diseases. Master transcription factors then are the "natural forces" in the Hippocratic dictum "Natural forces within us are the true healers of disease," and drugging epigenetic enzymes (corepressors) a way to harness these forces to heal.


Subject(s)
Neoplasms , Transcription Factors , Cell Differentiation/genetics , Epigenesis, Genetic , Humans , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Semin Hematol ; 58(1): 27-34, 2021 01.
Article in English | MEDLINE | ID: mdl-33509440

ABSTRACT

TET2 is one of the most frequently mutated genes in myeloid neoplasms. TET2 loss-of-function perturbs myeloid differentiation and causes clonal expansion. Despite extensive knowledge regarding biochemical mechanisms underlying distorted myeloid differentiation, targeted therapies are lagging. Here we review known biochemical mechanisms and candidate therapies that emerge from this. Specifically, we discuss the potential utility of vitamin C to compensate for TET-dioxygenase deficiency, to thereby restore the biochemical function. An alternative approach exploits the TET-deficient state for synthetic lethality, exploiting the fact that a minimum level of TET-dioxygenase activity is required for cell survival, rendering TET2-mutant malignant cells selectively vulnerable to inhibitors of TET-function.


Subject(s)
Carcinogenesis , Dioxygenases , Ascorbic Acid , Carcinogenesis/genetics , DNA Methylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Hematopoiesis/genetics , Humans , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...