Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters











Publication year range
1.
Nucleic Acids Res ; 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39217466

ABSTRACT

PARP inhibitors (PARPi) show selective efficacy in tumors with homologous recombination repair (HRR)-defects but the activation mechanism of HRR pathway in PARPi-treated cells remains enigmatic. To unveil it, we searched for the mediator bridging PARP1 to ATM pathways by screening 211 human ubiquitin-related proteins. We discovered TRIM44 as a crucial mediator that recruits the MRN complex to damaged chromatin, independent of PARP1 activity. TRIM44 binds PARP1 and regulates the ubiquitination-PARylation balance of PARP1, which facilitates timely recruitment of the MRN complex for DSB repair. Upon exposure to PARPi, TRIM44 shifts its binding from PARP1 to the MRN complex via its ZnF UBP domain. Knockdown of TRIM44 in cells significantly enhances the sensitivity to olaparib and overcomes the resistance to olaparib induced by 53BP1 deficiency. These observations emphasize the central role of TRIM44 in tethering PARP1 to the ATM-mediated repair pathway. Suppression of TRIM44 may enhance PARPi effectiveness and broaden their use even to HR-proficient tumors.

2.
Nature ; 634(8033): 482-491, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39261729

ABSTRACT

The licensing step of DNA double-strand break repair by homologous recombination entails resection of DNA ends to generate a single-stranded DNA template for assembly of the repair machinery consisting of the RAD51 recombinase and ancillary factors1. DNA end resection is mechanistically intricate and reliant on the tumour suppressor complex BRCA1-BARD1 (ref. 2). Specifically, three distinct nuclease entities-the 5'-3' exonuclease EXO1 and heterodimeric complexes of the DNA endonuclease DNA2, with either the BLM or WRN helicase-act in synergy to execute the end resection process3. A major question concerns whether BRCA1-BARD1 directly regulates end resection. Here, using highly purified protein factors, we provide evidence that BRCA1-BARD1 physically interacts with EXO1, BLM and WRN. Importantly, with reconstituted biochemical systems and a single-molecule analytical tool, we show that BRCA1-BARD1 upregulates the activity of all three resection pathways. We also demonstrate that BRCA1 and BARD1 harbour stand-alone modules that contribute to the overall functionality of BRCA1-BARD1. Moreover, analysis of a BARD1 mutant impaired in DNA binding shows the importance of this BARD1 attribute in end resection, both in vitro and in cells. Thus, BRCA1-BARD1 enhances the efficiency of all three long-range DNA end resection pathways during homologous recombination in human cells.


Subject(s)
BRCA1 Protein , DNA Breaks, Double-Stranded , Exodeoxyribonucleases , Homologous Recombination , RecQ Helicases , Tumor Suppressor Proteins , Ubiquitin-Protein Ligases , Humans , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , DNA/metabolism , DNA/genetics , DNA Helicases , DNA Repair , DNA Repair Enzymes , DNA, Single-Stranded/metabolism , Exodeoxyribonucleases/metabolism , Protein Binding , Rad51 Recombinase/metabolism , Recombinational DNA Repair , RecQ Helicases/metabolism , RecQ Helicases/genetics , Single Molecule Imaging , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Up-Regulation , Werner Syndrome Helicase/metabolism , Werner Syndrome Helicase/genetics
3.
Nat Commun ; 15(1): 7081, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152168

ABSTRACT

DSS1, essential for BRCA2-RAD51 dependent homologous recombination (HR), associates with the helical domain (HD) and OB fold 1 (OB1) of the BRCA2 DSS1/DNA-binding domain (DBD) which is frequently targeted by cancer-associated pathogenic variants. Herein, we reveal robust ss/dsDNA binding abilities in HD-OB1 subdomains and find that DSS1 shuts down HD-OB1's DNA binding to enable ssDNA targeting of the BRCA2-RAD51 complex. We show that C-terminal helix mutations of DSS1, including the cancer-associated R57Q mutation, disrupt this DSS1 regulation and permit dsDNA binding of HD-OB1/BRCA2-DBD. Importantly, these DSS1 mutations impair BRCA2/RAD51 ssDNA loading and focus formation and cause decreased HR efficiency, destabilization of stalled forks and R-loop accumulation, and hypersensitize cells to DNA-damaging agents. We propose that DSS1 restrains the intrinsic dsDNA binding of BRCA2-DBD to ensure BRCA2/RAD51 targeting to ssDNA, thereby promoting optimal execution of HR, and potentially replication fork protection and R-loop suppression.


Subject(s)
BRCA2 Protein , DNA Replication , DNA, Single-Stranded , DNA , Homologous Recombination , Mutation , Rad51 Recombinase , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/chemistry , Humans , DNA/metabolism , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Homeostasis , Protein Binding , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Protein Domains , Cell Line, Tumor , DNA Damage , Proteasome Endopeptidase Complex
4.
Cell Death Dis ; 15(1): 48, 2024 01 13.
Article in English | MEDLINE | ID: mdl-38218922

ABSTRACT

Valosin-containing protein (VCP)/p97, an AAA+ ATPase critical for maintaining proteostasis, emerges as a promising target for cancer therapy. This study reveals that targeting VCP selectively eliminates breast cancer cells while sparing non-transformed cells by inducing paraptosis, a non-apoptotic cell death mechanism characterized by endoplasmic reticulum and mitochondria dilation. Intriguingly, oncogenic HRas sensitizes non-transformed cells to VCP inhibition-mediated paraptosis. The susceptibility of cancer cells to VCP inhibition is attributed to the non-attenuation and recovery of protein synthesis under proteotoxic stress. Mechanistically, mTORC2/Akt activation and eIF3d-dependent translation contribute to translational rebound and amplification of proteotoxic stress. Furthermore, the ATF4/DDIT4 axis augments VCP inhibition-mediated paraptosis by activating Akt. Given that hyperactive Akt counteracts chemotherapeutic-induced apoptosis, VCP inhibition presents a promising therapeutic avenue to exploit Akt-associated vulnerabilities in cancer cells by triggering paraptosis while safeguarding normal cells.


Subject(s)
Neoplasms , Proto-Oncogene Proteins c-akt , Valosin Containing Protein/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Paraptosis , Adenosine Triphosphatases/metabolism , Endoplasmic Reticulum/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism
5.
Mol Cell ; 83(20): 3679-3691.e8, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37797621

ABSTRACT

The tumor-suppressor breast cancer 1 (BRCA1) in complex with BRCA1-associated really interesting new gene (RING) domain 1 (BARD1) is a RING-type ubiquitin E3 ligase that modifies nucleosomal histone and other substrates. The importance of BRCA1-BARD1 E3 activity in tumor suppression remains highly controversial, mainly stemming from studying mutant ligase-deficient BRCA1-BARD1 species that we show here still retain significant ligase activity. Using full-length BRCA1-BARD1, we establish robust BRCA1-BARD1-mediated ubiquitylation with specificity, uncover multiple modes of activity modulation, and construct a truly ligase-null variant and a variant specifically impaired in targeting nucleosomal histones. Cells expressing either of these BRCA1-BARD1 separation-of-function alleles are hypersensitive to DNA-damaging agents. Furthermore, we demonstrate that BRCA1-BARD1 ligase is not only required for DNA resection during homology-directed repair (HDR) but also contributes to later stages for HDR completion. Altogether, our findings reveal crucial, previously unrecognized roles of BRCA1-BARD1 ligase activity in genome repair via HDR, settle prior controversies regarding BRCA1-BARD1 ligase functions, and catalyze new efforts to uncover substrates related to tumor suppression.


Subject(s)
Neoplasms , Tumor Suppressor Proteins , Humans , Tumor Suppressor Proteins/metabolism , BRCA1 Protein/metabolism , Ubiquitination , Histones/genetics , Histones/metabolism , Ubiquitin-Protein Ligases/metabolism , Recombinational DNA Repair , DNA , DNA Repair
6.
Exp Mol Med ; 54(10): 1705-1712, 2022 10.
Article in English | MEDLINE | ID: mdl-36229590

ABSTRACT

In eukaryotic cells, DNA damage can occur at any time and at any chromatin locus, including loci at which active transcription is taking place. DNA double-strand breaks affect chromatin integrity and elicit a DNA damage response to facilitate repair of the DNA lesion. Actively transcribed genes near DNA lesions are transiently suppressed by crosstalk between DNA damage response factors and polycomb repressive complexes. Epigenetic modulation of the chromatin environment also contributes to efficient DNA damage response signaling and transcriptional repression. On the other hand, RNA transcripts produced in the G1 phase, as well as the active chromatin context of the lesion, appear to drive homologous recombination repair. Here, we discuss how the ISWI family of chromatin remodeling factors coordinates the DNA damage response and transcriptional repression, especially in transcriptionally active regions, highlighting the direct modulation of the epigenetic environment.


Subject(s)
Chromatin , DNA Breaks, Double-Stranded , Chromatin/genetics , DNA Repair , DNA Damage , DNA , Chromatin Assembly and Disassembly
7.
Sci Rep ; 12(1): 15583, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36114221

ABSTRACT

In this study, piezoelectric composite nanofiber films were fabricated by introducing nitrogen-doped-reduced-graphene-oxide as a conductive material to a P(VDF-TrFE) polymer and a BiScO3-PbTiO3 ceramic composite employing an electrospinning process. Nitrogen was doped/substituted into rGO to remove or compensate defects formed during the reduction process. Electro-spinning process was employed to extract piezoelectric composite nanofiber films under self-poling condition. Interdigital electrodes was employed to make planner type energy harvesters to collect electro-mechanical energy applied to the flexible energy harvester. From the piezoelectric composite with interdigital electrode, the effective dielectric permittivity extracted from the conformal mapping method. By introducing BS-PT ceramics and N-rGO conductors to the P(VDF-TrFE) piezoelectric composite nanofiber films, the effective dielectric permittivity was improved from 8.2 to 15.5. This improved effective dielectric constant probably come from the increased electric flux density due to the increased conductivity. Fabricated interdigital electrode using this thin composite nanofiber film was designed and tested for wearable device applications. An external mechanical force of 350 N was applied to the composite nanofiber-based energy harvester with interdigital electrodes at a rate of 0.6 Hz, the peak voltage and current were 13 V and 1.25 µA, respectively. By optimizing the device fabrication, the open-circuit voltage, stored voltage, and generated output power obtained were 12.4 V, 3.78 V, and 6.3 µW, respectively.


Subject(s)
Graphite , Nanofibers , Wearable Electronic Devices , Ceramics , Nitrogen , Oxides , Polymers
8.
Nucleic Acids Res ; 49(21): 12268-12283, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34850117

ABSTRACT

DNA lesions impact on local transcription and the damage-induced transcriptional repression facilitates efficient DNA repair. However, how chromatin dynamics cooperates with these two events remained largely unknown. We here show that histone H2A acetylation at K118 is enriched in transcriptionally active regions. Under DNA damage, the RSF1 chromatin remodeling factor recruits HDAC1 to DSB sites. The RSF1-HDAC1 complex induces the deacetylation of H2A(X)-K118 and its deacetylation is indispensable for the ubiquitination of histone H2A at K119. Accordingly, the acetylation mimetic H2A-K118Q suppressed the H2A-K119ub level, perturbing the transcriptional repression at DNA lesions. Intriguingly, deacetylation of H2AX at K118 also licenses the propagation of γH2AX and recruitment of MDC1. Consequently, the H2AX-K118Q limits DNA repair. Together, the RSF1-HDAC1 complex controls the traffic of the DNA damage response and transcription simultaneously in transcriptionally active chromatins. The interplay between chromatin remodelers and histone modifiers highlights the importance of chromatin versatility in the maintenance of genome integrity.


Subject(s)
Chromatin Assembly and Disassembly , DNA Breaks, Double-Stranded , DNA Repair/genetics , Epigenesis, Genetic , Gene Expression Regulation , Nuclear Proteins/genetics , Trans-Activators/genetics , Acetylation , Animals , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , HEK293 Cells , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Histones/genetics , Histones/metabolism , Humans , Lysine/genetics , Lysine/metabolism , Mice , Microscopy, Confocal , NIH 3T3 Cells , Nuclear Proteins/metabolism , Protein Binding , RNA Interference , Trans-Activators/metabolism , Ubiquitination
9.
Nucleic Acids Res ; 49(19): 11083-11102, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34614178

ABSTRACT

Mutual crosstalk among poly(ADP-ribose) (PAR), activated PAR polymerase 1 (PARP1) metabolites, and DNA repair machinery has emerged as a key regulatory mechanism of the DNA damage response (DDR). However, there is no conclusive evidence of how PAR precisely controls DDR. Herein, six deubiquitinating enzymes (DUBs) associated with PAR-coupled DDR were identified, and the role of USP39, an inactive DUB involved in spliceosome assembly, was characterized. USP39 rapidly localizes to DNA lesions in a PAR-dependent manner, where it regulates non-homologous end-joining (NHEJ) via a tripartite RG motif located in the N-terminus comprising 46 amino acids (N46). Furthermore, USP39 acts as a molecular trigger for liquid demixing in a PAR-coupled N46-dependent manner, thereby directly interacting with the XRCC4/LIG4 complex during NHEJ. In parallel, the USP39-associated spliceosome complex controls homologous recombination repair in a PAR-independent manner. These findings provide mechanistic insights into how PAR chains precisely control DNA repair processes in the DDR.


Subject(s)
DNA End-Joining Repair , DNA Ligase ATP/genetics , DNA-Binding Proteins/genetics , DNA/genetics , Poly(ADP-ribose) Polymerases/genetics , Ubiquitin-Specific Proteases/genetics , Amino Acid Motifs , Cell Cycle/genetics , Cell Line , Cell Line, Tumor , DNA/metabolism , DNA Breaks, Double-Stranded , DNA Ligase ATP/metabolism , DNA-Binding Proteins/metabolism , Endopeptidases/genetics , Endopeptidases/metabolism , Eukaryotic Initiation Factor-3/genetics , Eukaryotic Initiation Factor-3/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Osteoblasts/cytology , Osteoblasts/metabolism , Poly Adenosine Diphosphate Ribose/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Recombinational DNA Repair , Signal Transduction , Spliceosomes , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Specific Proteases/metabolism
10.
J Nanosci Nanotechnol ; 21(3): 1927-1931, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33404470

ABSTRACT

In this work, a light grid system with a high-power LED chip was manufactured and employed to analyze the energy efficiency of output optical energy. The high-power LED system based on thermoelectric modules, a heat dissipation structure and optical transmission system with an optical fiber were optimally combined and designed, which increased the efficiency of light grid system. Additionally, by introducing an effective design for the heat dissipation structure, the output optical energy and recycled electrical energy were increased. The recycled energy through optimized heat dissipation structure was 1.94 W, and the system efficiency of designed light grid system is more than 50%. In this research, we intensively studied the energy efficiency of a light grid system as well as the recycling of thermal energy through thermoelectric modules.

11.
J Nanosci Nanotechnol ; 21(3): 1978-1983, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33404479

ABSTRACT

Figure of merit the product of piezoelectric charge constant and the piezoelectric voltage constant-d33 × g33 in piezoelectric energy harvesting systems are critical measures in energy harvester applications. It is difficult to achieve high figure of merit because of the interdependence of d33 and the relative dielectric constant, εr. Until now, the prohibitive amount of effort required to solve this problem has led to it being considered an unsolvable issue. Lead zirconate titanate ceramic, Pb(Zr,Ti)O3, has been reported to exhibit high values of d33 and εr. However, to be employed as piezoelectric energy harvester, a candidate material is required to exhibit both high piezoelectric charge coefficient and high piezoelectric electric voltage coefficient simultaneously. To enhance the figure of merit of Pb(Zr,Ti)O3-based materials, dopants have also been considered. Pb(Zn,Ni,Nb)O3- added Pb(Zr,Ti)O3, Pb(Zr,Ti)O3-Pb(Zn,Ni,Nb)O3 ceramic has been reported to exhibit a high d33 value of 561 pC/N. It's dielectric constant has also been reported to be low at 1898. In this study, Pb(Zr,Ti)O3-Pb(Zn,Ni,Nb)O3-Pb(In,Nb)O3 was investigated in the context of enhancing the figure of merit of Pb(Zr,Ti)O3-based materials. During the proposed process, we increased the corresponding figure of merit by adding Pb(In,Nb)O3 material. Besides exhibiting a low dielectric constant, the Pb(In,Nb)O3 material was also observed to exhibit high d33 × g33 as the proposed doping increased the value of d33 greatly, while maintaining the dielectric constant (Yan, J., et al., 2019. Large engancement of trans coefficient in PZT-PZN energy harvesting system through introducing low εrPIN relaxor. Journal of the European Ceramic Society, 39, pp.2666-2672). Further, we conducted an optimization experiment by controlling the doping concentration and the sintering temperature.

12.
Sensors (Basel) ; 20(7)2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32244381

ABSTRACT

As a piezoelectric material, (Bi,Sc)O3-(Pb,Ti)O3 ceramics have been tested and analyzed for sensors and energy harvester applications owing to their relatively high Curie temperature and high piezoelectric coefficient. In this work, we prepared optimized (Bi,Sc)O3-(Pb,Ti)O3 piezoelectric materials through the conventional ceramic process. To increase the output energy, a multilayered structure was proposed and designed, and to obtain the maximum output energy, impedance matching techniques were considered and tested. By varying and measuring the energy harvesting system, we confirmed that the output energies were optimized by varying the load resistance. As the load resistance increased, the output voltage became saturated. Then, we calculated the optimized output power using the electric energy formula. Consequently, we identified the highest output energy of 5.93 µW/cm2 at 3 MΩ for the quadruple-layer harvester and load resistor using the impedance matching system. We characterized and improved the electrical properties of the piezoelectric energy harvesters by introducing impedance matching and performing the modeling of the energy harvesting component. Modeling was conducted for the piezoelectric generator component by introducing the mechanical force dependent voltage sources and load resistors and piezoelectric capacitor connected in parallel. Moreover, the generated output voltages were simulated by introducing an impedance matching technique. This work is designed to explain the modeling of piezoelectric energy harvesters. In this model, the relationship between applied mechanical force and output energy was discussed by employing experimental results and simulation.

13.
J Nanosci Nanotechnol ; 20(1): 608-610, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31383220

ABSTRACT

Light Emitting Diodes (LED) are highly energy efficient and offer long-life times for display applications. Long life and minimal energy consumption are often the most attractive advantages for electronic devices. Because LEDs are based on compound semiconductors, which explore the direct transition between the conduction and valance band edges, thermal energy loss can be minimized during operation. However, even though these types of LEDs are based on direct transition type semiconductors, thermal energy is still emitted during operation owing to forward conduction and reverse leakage currents. This research proposes capturing this energy loss through thermoelectric module-based energy recycling methods to improve the energy efficiency of LED applications, achieving savings of up to 18%. Additional analysis was performed on high power LED sources resulting in the manufacture of a high-power LED light grid system.

14.
J Nanosci Nanotechnol ; 20(1): 616-620, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31383222

ABSTRACT

Recently, many researches on Al-doped ZnO (AZO) thin film based transparent conducting oxide (TCO) have been intensively investigated for the electronic and display device applications. In this study, AZO thin films with different thicknesses were deposited on polyethylene terephthalate (PET) substrates by sol-gel spin coating at a relatively low temperature. By optimizing the AZO thickness, maximum figure of merit (FOM) values were investigated and discussed. Commonly, PET substrates are used in the fabrication of flexible display devices. However, because of the low melting temperature of the PET substrate (~200 °C), AZO thin films spin-coated on PET substrates cannot be subjected to crystallization at high temperatures. Therefore, alternative advanced optical annealing method was considered to crystalize the AZO thin films on the PET substrates. In this experiment, optical annealing method will be proposed. To increase electrical conductivity, Platinum (Pt) dots were sprayed on the AZO sample to improve the electric conductivity. The Pt-spotted AZO thin films on flexible PET substrates prepared by sputtering exhibited high electrical conductivities and high optical transmittances. The 0.63 nm-thick Pt/AZO/PET film exhibited a transmittance of 80% in the 380-800 nm range and the 3.78 nm-thick Pt/AZO/PET film exhibited a resistivity of 5.61×10-4 Ώ·m. Notably, the 159 nm-thick Pt/AZO/PET film exhibited an FOM of 156. Moreover, the sheet resistances and transmittances of the prepared AZO/PET films were determined.

15.
Sensors (Basel) ; 19(9)2019 May 07.
Article in English | MEDLINE | ID: mdl-31067773

ABSTRACT

Piezoelectric and dielectric materials have attracted much attention for their functional device applications. Despite its excellent piezoelectric properties, the content of lead in piezoelectric materials should be restricted to prevent future environmental problems. Therefore, reduced lead content in piezoelectric materials with similar piezoelectric properties is favorable. In our research, piezoelectric materials with decreased lead content will be studied and discussed. Even though the lead content is decreased in Bi(Mg0.5Ti0.5)O3-PbTiO3 ceramics, they show piezoelectric properties similar to that of lead zirconate titanate (PZT)-based materials. We believe this high piezoelectric behavior is related to the relaxation behavior of Bi(Mg0.5Ti0.5)O3-PbTiO3 (BMT-PT) ceramics. In this study, 0.62Bi(Mg0.5Ti0.5)O3-0.38PbTiO3 ceramics were prepared by the conventional sintering process. These piezoelectric ceramics were sintered at varying temperatures of 975-1100 °C. Crystallinity and structural properties were analyzed and discussed. X-ray diffraction pattern analysis demonstrated that the optimal sintering temperature was around 1075 °C. A very high Curie temperature of 447 °C was recorded for 0.62BMT-0.38PT ceramics sintered at 1075 °C. For the first time, we found that the origin of the high Curie temperature, d33, and the dielectric constant is the relaxation behavior of different dipoles in 0.62BMT-0.38PT ceramics.

16.
Nucleic Acids Res ; 47(12): 6299-6314, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31045206

ABSTRACT

Histone H2AX undergoes a phosphorylation switch from pTyr142 (H2AX-pY142) to pSer139 (γH2AX) in the DNA damage response (DDR); however, the functional role of H2AX-pY142 remains elusive. Here, we report a new layer of regulation involving transcription-coupled H2AX-pY142 in the DDR. We found that constitutive H2AX-pY142 generated by Williams-Beuren syndrome transcription factor (WSTF) interacts with RNA polymerase II (RNAPII) and is associated with RNAPII-mediated active transcription in proliferating cells. Also, removal of pre-existing H2AX-pY142 by ATM-dependent EYA1/3 phosphatases disrupts this association and requires for transcriptional silencing at transcribed active damage sites. The following recovery of H2AX-pY142 via translocation of WSTF to DNA lesions facilitates transcription-coupled homologous recombination (TC-HR) in the G1 phase, whereby RAD51 loading, but not RPA32, utilizes RNAPII-dependent active RNA transcripts as donor templates. We propose that the WSTF-H2AX-RNAPII axis regulates transcription and TC-HR repair to maintain genome integrity.


Subject(s)
Histones/metabolism , Recombinational DNA Repair , Transcription Factors/metabolism , Transcription, Genetic , Cell Line, Tumor , DNA-Binding Proteins/metabolism , G1 Phase/genetics , HEK293 Cells , HeLa Cells , Histones/chemistry , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/metabolism , Phosphorylation , Protein Tyrosine Phosphatases/metabolism , RNA Polymerase II/metabolism , Tyrosine/metabolism
17.
Genes (Basel) ; 10(4)2019 04 08.
Article in English | MEDLINE | ID: mdl-30965655

ABSTRACT

Microhomology-mediated end joining (MMEJ) anneals short, imperfect microhomologies flanking DNA breaks, producing repair products with deletions in a Ku- and RAD52-independent fashion. Puzzlingly, MMEJ preferentially selects certain microhomologies over others, even when multiple microhomologies are available. To define rules and parameters for microhomology selection, we altered the length, the position, and the level of mismatches to the microhomologies flanking homothallic switching (HO) endonuclease-induced breaks and assessed their effect on MMEJ frequency and the types of repair product formation. We found that microhomology of eight to 20 base pairs carrying no more than 20% mismatches efficiently induced MMEJ. Deletion of MSH6 did not impact MMEJ frequency. MMEJ preferentially chose a microhomology pair that was more proximal from the break. Interestingly, MMEJ events preferentially retained the centromere proximal side of the HO break, while the sequences proximal to the telomere were frequently deleted. The asymmetry in the deletional profile among MMEJ products was reduced when HO was induced on the circular chromosome. The results provide insight into how cells search and select microhomologies for MMEJ in budding yeast.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair/genetics , DNA Repair/genetics , Saccharomyces cerevisiae/genetics , DNA-Binding Proteins/genetics , Endonucleases/genetics , Rad52 DNA Repair and Recombination Protein/genetics , Saccharomyces cerevisiae Proteins/genetics , Sequence Deletion/genetics
18.
Nat Commun ; 10(1): 1577, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30952868

ABSTRACT

DNA double-strand break (DSB) signaling and repair are critical for genome integrity. They rely on highly coordinated processes including posttranslational modifications of proteins. Here we show that Pellino1 (Peli1) is a DSB-responsive ubiquitin ligase required for the accumulation of DNA damage response proteins and efficient homologous recombination (HR) repair. Peli1 is activated by ATM-mediated phosphorylation. It is recruited to DSB sites in ATM- and γH2AX-dependent manners. Interaction of Peli1 with phosphorylated histone H2AX enables it to bind to and mediate the formation of K63-linked ubiquitination of NBS1, which subsequently results in feedback activation of ATM and promotes HR repair. Collectively, these results provide a DSB-responsive factor underlying the connection between ATM kinase and DSB-induced ubiquitination.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/metabolism , DNA Repair , Nuclear Proteins/metabolism , Nuclear Proteins/physiology , Ubiquitin-Protein Ligases/physiology , Ataxia Telangiectasia Mutated Proteins/physiology , Cell Line, Tumor , DNA Breaks, Double-Stranded , Humans , Nuclear Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
19.
J Nanosci Nanotechnol ; 19(3): 1777-1779, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30469265

ABSTRACT

In this study, emitted light energy and the recycling of thermal energy from the arrays of a light emitting diode system were investigated. A light grid system is composed of the array of high power LED chips, thermoelement and heat sink. High power LED source has an advantage of high luminous efficiency, which combined with wasted thermal energy. Thermal energy loss can be regarded wasted energy. However, this wasting thermal energy can be effectively converted to the electrical energy from thermoelement and heat sink of a light grid system. By introducing the light grid system, the optical energy and thermal energy can be more effectively managed. In particular, we have intensively studied energy conversion efficiency of light grid system and energy harvesting characteristic through thermal energy.

20.
Materials (Basel) ; 11(11)2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30424490

ABSTRACT

The pyrochlore phase in ferroelectric and piezoelectric materials is the main obstacle device application due to its poor electrical properties. Especially, the pyrochlore phase is frequently observed in the perovskite-based metal-oxide materials including piezoelectric and ferroelectric ceramics, which are based on solid-state reaction methods for fabrication. To overcome these problems, advanced innovative methods such as partial oxalate process will be investigated. In this method, crystalized magnesium niobite (MN) and lead titanate (PT) powders will be coated with a certain amount of lead oxalate and, then, the calcination process can be carried out to form the PMN-PT without pyrochlore phase. In this study, (1-x)PMN-xPT ceramics near the morphotropic phase boundary (MPB), with compositions of x = 0.25⁻0.40, have been prepared employing the partial oxalate method at various temperatures. The crystalline, microstructure, and piezoelectric properties of (1-x)PMN-xPT ceramics depending on the sintering temperature were intensively investigated and discussed. By optimizing the sintering temperature and compositions from the PMN-PT ceramics, the maximum value of the piezoelectric charge coefficient (d33) of 665pC/N, planar electromechanical coupling factor (kp) of 77.8%, dielectric constant (εr) of 3230, and remanent polarization (Pr) of 31.67 µC/cm² were obtained.

SELECTION OF CITATIONS
SEARCH DETAIL