Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.251
Filter
1.
ISA Trans ; : 1-10, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39379250

ABSTRACT

The hybrid reluctance actuator (HRA) has achieved widespread application in scanning motion tasks. However, the nonlinear perturbations arising from position-dependent stiffness fluctuations, hysteresis, eddy, and flux leakage can significantly affect the control performance. To enhance the control performance of HRA-based systems in scanning motion, this paper introduces an adaptive feedforward method, known as the Chua operator-based Kalman feedforward compensator (COKFC), which aims to mitigate these nonlinear perturbations, with a PID controller serving as the central control element. In the COKFC approach, a Chua operator is employed to effectively capture the inverse hysteresis behavior. A Chua-based time-varying feedforward compensation model is then formulated to represent the inversion of the nonlinear perturbations inherent in the HRA. An improved Kalman filter is utilized for the real-time adaptation of the time-varying parameters within the feedforward compensation model. The design procedure for this control strategy is presented. Experimental evaluations are conducted on an HRA-based stage (HRA-BS), and comparisons are made between the proposed method and several advanced control methods. The experimental results demonstrate that the proposed COKFC method exhibits superior control performance for the scanning motion of the HRA-BS, highlighting its effectiveness in practical applications.

2.
World J Gastrointest Surg ; 16(9): 2853-2859, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39351546

ABSTRACT

BACKGROUND: In laparoscopic proximal gastrectomy (LPG), the prolapse of the hepatic left lateral lobe near the lesser curvature and esophageal hiatus can obstruct the field of vision and operation. Therefore, it is necessary to retract or obstruct the hepatic left lateral lobe to ensure a clear field of vision. AIM: To investigate the safety and clinical efficacy of the modified hepatic left lateral lobe inversion technique for LPG. METHODS: A retrospective analysis was conducted on the clinical data of 13 consecutive patients with early-stage upper gastric adenocarcinoma or adenocarcinoma of the esophagogastric junction treated with LPG from January to December 2023 at the Department of Gastrointestinal Surgery, Second Affiliated Hospital of Fujian Medical University. The modified hepatic left lateral lobe inversion technique was used to expose the surgical field in all patients, and short-term outcomes were observed. RESULTS: In all 13 patients, the modified hepatic left lateral lobe inversion technique was successful during surgery without the need for re-retraction or alteration of the liver traction method. There were no instances of esophageal hiatus occlusion, eliminating the need for forceps to assist in exposure. There was no occurrence of intraoperative hepatic hemorrhage, hepatic vein injury, or hepatic congestion. No postoperative digestive complications of Clavien-Dindo grade ≥ II occurred within 30 days after surgery, except for a single case of pulmonary infection. Some patients experienced increases in alanine aminotransferase and aspartate aminotransferase levels on the first day after surgery, which significantly decreased by the third day and returned to normal by the seventh day after surgery. CONCLUSION: The modified hepatic left lateral lobe inversion technique has demonstrated satisfactory results, offering advantages in terms of facilitating surgical procedures, reducing surgical trauma, and protecting the liver.

3.
Biochim Biophys Acta Mol Cell Res ; : 119856, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357548

ABSTRACT

Obesity is recognized as a significant contributor to the onset of kidney disease. However, the key processes involved in the development of kidney disease in obese individuals are not well understood. Here, we investigated the effects of high-fat diet (HFD)-induced obesity on folic acid (FA)-induced kidney injury in mice. Mice were fed an HFD for 12 weeks to induce obesity, followed by an additional intraperitoneal injection of FA. The results showed that mice fed HFD developed higher levels of kidney damage than those in the chow group. In contrast, mice exposed to both HFD and FA showed less fibrosis and inflammatory responses compared to the FA only treated group. Furthermore, the HFD with FA group exhibited elevated lipid accumulation in the kidney and reduced expression of mitochondrial proteins compared to the FA-treated group. Under in vitro experimental conditions, we found that lipid accumulation induced by oleic acid treatment reduced inflammatory and fibrotic responses in both renal tubules and fibroblasts. Finally, RNA sequencing analysis revealed that the inflammasome and pyroptosis signaling pathways were significantly increased in the HFD group with FA injection. In summary, these findings suggest that obesity increases renal injury due to a lack of appropriate inflammatory, fibrotic, and metabolic responses and the activation of the inflammasome and pyroptosis signaling pathways.

4.
Cureus ; 16(9): e68407, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39360108

ABSTRACT

Online adaptive radiotherapy (oART) dose calculation relies on synthetic computed tomography (sCT), which notably influences anatomical changes. This study elucidates how sCT may respond to significant inter-fractional tumor volume reduction and its subsequent impact on dose distribution. In this case report, we exported sCT and cone-beam CT (CBCT) images from each treatment session. We retrospectively analyzed 20 adaptive and scheduled plans of a patient receiving oART for large pleural metastases with notable inter-fractional tumor regression. By overriding the CT number of the dissipated tumor volume with that of the lungs on each sCT, we recalculated each plan. We compared the dose distribution between the adaptive and scheduled plans. Percentage dose difference and 3D gamma analysis were employed to assess dose variability. Results of the dose analysis showed that, compared to the online (non-overridden) plans, the recalculated plans using overridden sCT demonstrated right-shifted dose-volume histogram curves for the targets and right lung, with a slight but statistically significant increase of no less than 1.5% in D mean and D max for the targets and right lung. The location of hotspots shifted in alignment with tumor shrinkage and beam arrangement. Both recalculated adaptive and scheduled plans achieved ideal GTV, CTV, and PTV coverage, with adaptive plans significantly reducing the dose and irradiated volume to the right lung. In conclusion, as the pleural tumor volume decreased, online plans slightly underestimated the dose distribution and shifted the location of hotspots, though this remained clinically acceptable. Importantly, adaptive plans significantly minimized the irradiated volume of the critical OAR (right lung) while ensuring optimal dose coverage of the target volume, demonstrating the potential of sCT and adaptive oART to enhance treatment precision and efficacy in dynamically changing tumor environments.

5.
ACS Nano ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264113

ABSTRACT

The tethered molecule exhibits characteristics of both free and fixed states, with the electrodynamics involved in its diffusion, electrophoresis, and stretching processes still not fully understood. We developed a Single-Molecule Manipulation, Identification, and Length Examination (SMILE) system by integrating piezoelectric devices with nanopipettes. This system enabled successful capture and stretching of tethered double-stranded DNA within the nanopore. Our research unveiled distinct capture (rcapture) and stretch radii (rstretch) surrounding the DNA's anchor point. Notably, consistent ratios of capture radius for DNA of varying lengths (2k, 4k, and 6k base pairs) were observed across different capturing voltages, approximately 1:1.4:1.83, showing a resemblance to their gyration radius ratios. However, the ratios of stretch radius are consistent to their contour length (L0), with the stretching ratio (rstretch/L0) increasing from 70 to 90% as the voltage rose from 100 to 1000 mV. Additionally, through numerical simulations, we identified the origin of capture and stretch radii, determined by the entropic elasticity-induced capture barrier and the electric field-dominant escape barrier. This research introduces an innovative methodology and outlines research perspectives for a comprehensive exploration of the conformational, electrical, and diffusion characteristics of tethered molecules.

6.
Polymers (Basel) ; 16(17)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39274167

ABSTRACT

Vibration sensors are widely applied in the detection of faults and analysis of operational states in engineering machinery and equipment. However, commercial vibration sensors with a feature of high hardness hinder their usage in some practical applications where the measured objects have irregular surfaces that are difficult to install. Moreover, as the operating environments of machinery become increasingly complex, there is a growing demand for sensors capable of working in wet and humid conditions. Here, we present a flexible, superhydrophobic vibration sensor with parallel microcracks. The sensor is fabricated using a femtosecond laser direct writing ablation strategy to create the parallel cracks on a PDMS film, followed by spray-coating with a conductive ink composed of MWCNTs, CB, and PDMS. The results demonstrate that the developed flexible sensor exhibits a high-frequency response of up to 2000 Hz, a high acceleration response of up to 100 m/s2, a water contact angle as high as 159.61°, and a linearity of 0.9812 between the voltage signal and acceleration. The results indicate that the sensor can be employed for underwater vibration, sound recognition, and vibration monitoring in fields such as shield cutters, holding significant potential for mechanical equipment vibration monitoring and speech-based human-machine interaction.

7.
J Nutr Biochem ; 134: 109765, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39255902

ABSTRACT

Calorie restriction (CR) is known to confer health benefits, including longevity and disease prevention. Although CR is promising in preventing chronic kidney disease (CKD), its potential impact on the progression of kidney fibrosis from acute kidney injury (AKI) to CKD remains unclear. Here, we present evidence that CR exacerbates renal damage in a mouse model of folic acid (FA)-induced renal fibrosis by altering mitochondrial metabolism and inflammation. Mice subjected to CR (60% of ad libitum) for three days were subjected to high dose of FA (250 mg/kg) injection and maintained under CR for an additional week before being sacrificed. Biochemical analyses showed that CR mice exhibited increased kidney injury and fibrosis. RNA sequencing analysis demonstrated decreased electron transport and oxidative phosphorylation (OXPHOS) in CR kidneys with injury, heightened inflammatory, and fibrotic responses. CR significantly decreased OXPHOS gene and protein levels and reduced ß-oxidation-associated proteins in the kidney. To determine whether defects in mitochondrial metabolism is associated with inflammation in the kidney, further in vitro experiments were performed. NRK52E kidney epithelial cells were treated with antimycin A to induce mitochondrial damage. Antimycin A treatment significantly increased chemokine expression via a STING-dependent pathway. Serum restriction in NRK49F kidney fibroblasts was observed to enhance the fibrotic response induced by TGFß under in vitro conditions. In summary, our results indicate that CR exacerbates fibrosis and inflammatory responses in the kidney by altering mitochondrial metabolism, highlighting the importance of adequate energy supply for an effective response to AKI and fibrosis development.

8.
Viruses ; 16(9)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39339926

ABSTRACT

Xanthomonas oryzae pv. oryzae (Xoo) is a significant bacterial pathogen responsible for outbreaks of bacterial leaf blight in rice, posing a major threat to rice cultivation worldwide. Effective management of this pathogen is crucial for ensuring rice yield and food security. In this study, we identified and characterized a novel Xoo phage, ZP3, isolated from diseased rice leaves in Zhejiang, China, which may offer new insights into biocontrol strategies against Xoo and contribute to the development of innovative approaches to combat bacterial leaf blight. Transmission electron microscopy indicated that ZP3 had a short, non-contractile tail. Genome sequencing and bioinformatic analysis showed that ZP3 had a double-stranded DNA genome with a length of 44,713 bp, a G + C content of 52.2%, and 59 predicted genes, which was similar to other OP1-type Xoo phages belonging to the genus Xipdecavirus. ZP3's endolysin LysZP was further studied for its bacteriolytic action, and the N-terminal transmembrane domain of LysZP is suggested to be a signal-arrest-release sequence that mediates the translocation of LysZP to the periplasm. Our study contributes to the understanding of phage-Xoo interactions and suggests that phage ZP3 and its endolysin LysZP could be developed into biocontrol agents against this phytopathogen.


Subject(s)
Bacteriophages , Genome, Viral , Oryza , Plant Diseases , Xanthomonas , Xanthomonas/virology , Xanthomonas/drug effects , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/isolation & purification , Oryza/microbiology , Oryza/virology , Plant Diseases/microbiology , Plant Diseases/virology , Endopeptidases/pharmacology , Endopeptidases/genetics , Endopeptidases/chemistry , Endopeptidases/metabolism , Phylogeny , Plant Leaves/virology , Plant Leaves/microbiology , China , Genomics/methods
9.
Angew Chem Int Ed Engl ; : e202416947, 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39343739

ABSTRACT

Lithium-carbon dioxide (Li-CO2) and Li-air batteries hold great potential in achieving carbon neutral given their ultrahigh theoretical energy density and eco-friendly features. However, these Li-gas batteries still suffer from low discharging-charging rate and poor cycling life due to sluggish decomposition kinetics of discharge products especially Li2CO3. Here we report the theory-guided design and preparation of unconventional phase metal heteronanostructures as cathode catalysts for high-performance Li-CO2/air batteries. The assembled Li-CO2 cells with unconventional phase 4H/face-centered cubic (fcc) ruthenium-nickel heteronanostructures deliver a narrow discharge-charge gap of 0.65 V, excellent rate capability and long-term cycling stability over 200 cycles at 250 mA g-1. The constructed Li-air batteries can steadily run for above 150 cycles in ambient air. Electrochemical mechanism studies reveal that 4H/fcc Ru-Ni with high-electroactivity facets can boost redox reaction kinetics and tune discharge reactions towards Li2C2O4 path, alleviating electrolyte/catalyst failures induced by the aggressive singlet oxygen from solo decomposition of Li2CO3.

10.
BMC Med ; 22(1): 407, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39304842

ABSTRACT

BACKGROUND: Kidney transplantation is the optimal renal replacement therapy for children with end-stage renal disease; however, delayed graft function (DGF), a common post-operative complication, may negatively impact the long-term outcomes of both the graft and the pediatric recipient. However, there is limited research on DGF in pediatric kidney transplant recipients. This study aims to develop a predictive model for the risk of DGF occurrence after pediatric kidney transplantation by integrating donor and recipient characteristics and utilizing machine learning algorithms, ultimately providing guidance for clinical decision-making. METHODS: This single-center retrospective cohort study includes all recipients under 18 years of age who underwent single-donor kidney transplantation at our hospital between 2016 and 2023, along with their corresponding donors. Demographic, clinical, and laboratory examination data were collected from both donors and recipients. Univariate logistic regression models and differential analysis were employed to identify features associated with DGF. Subsequently, a risk score for predicting DGF occurrence (DGF-RS) was constructed based on machine learning combinations. Model performance was evaluated using the receiver operating characteristic curves, decision curve analysis (DCA), and other methods. RESULTS: The study included a total of 140 pediatric kidney transplant recipients, among whom 37 (26.4%) developed DGF. Univariate analysis revealed that high-density lipoprotein cholesterol (HDLC), donor after circulatory death (DCD), warm ischemia time (WIT), cold ischemia time (CIT), gender match, and donor creatinine were significantly associated with DGF (P < 0.05). Based on these six features, the random forest model (mtry = 5, 75%p) exhibited the best predictive performance among 97 machine learning models, with the area under the curve values reaching 0.983, 1, and 0.905 for the entire cohort, training set, and validation set, respectively. This model significantly outperformed single indicators. The DCA curve confirmed the clinical utility of this model. CONCLUSIONS: In this study, we developed a machine learning-based predictive model for DGF following pediatric kidney transplantation, termed DGF-RS, which integrates both donor and recipient characteristics. The model demonstrated excellent predictive accuracy and provides essential guidance for clinical decision-making. These findings contribute to our understanding of the pathogenesis of DGF.


Subject(s)
Delayed Graft Function , Kidney Transplantation , Machine Learning , Tissue Donors , Humans , Kidney Transplantation/adverse effects , Female , Male , Child , Retrospective Studies , Adolescent , Child, Preschool , Infant
11.
BMC Cardiovasc Disord ; 24(1): 508, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39313838

ABSTRACT

BACKGROUNDS: The prognosis of the triglyceride-glucose (TyG) index, a validated surrogate marker for insulin resistance, in patients with severe aortic stenosis (AS) undergoing transcatheter aortic valve replacement (TAVR) remains unknown. METHODS: This study consecutively enrolled patients diagnosed with severe AS who underwent TAVR in a Chinese tertiary hospital from March 2013 to September 2023. Participants were stratified based on the TyG index cut-off value. Cox proportional hazards regression models were utilized to explore the association between the TyG index and all-cause mortality, including an assessment of interactions between the TyG index and various covariates on mortality outcomes. RESULTS: Among 1045 patients (mean age 74.7 years, 58.2% male), there was 134 all-cause mortality, resulting in a crude mortality rate of 64.3 per 1000 person-years. Adjusting for age, sex, body mass index, smoking, hypertension, diabetes mellitus, bicuspid aortic valve, atrial fibrillation, Society of Thoracic Surgeons (STS) score, and left ventricular ejection fraction, a per-unit increase in the TyG index was associated with a 41% higher all-cause mortality risk (HR 1.41, 95% CI 1.03-1.93, p = 0.030). Notably, the relationship between the TyG index and all-cause mortality was significantly modified by age (pinteraction = 0.027), sex (pinteraction = 0.007), hypertension (pinteraction = 0.030), and STS score (pinteraction = 0.002). CONCLUSIONS: A higher TyG index is significantly associated with an increased risk of all-cause mortality in AS patients after TAVR. These results underscore the importance of considering the TyG index in the prognostic evaluation of AS patients following TAVR.


Subject(s)
Aortic Valve Stenosis , Biomarkers , Blood Glucose , Cause of Death , Transcatheter Aortic Valve Replacement , Triglycerides , Humans , Male , Female , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/mortality , Aortic Valve Stenosis/blood , Aortic Valve Stenosis/physiopathology , Transcatheter Aortic Valve Replacement/mortality , Transcatheter Aortic Valve Replacement/adverse effects , Risk Factors , Aged , Risk Assessment , Blood Glucose/metabolism , Aged, 80 and over , Biomarkers/blood , Triglycerides/blood , Treatment Outcome , Time Factors , Retrospective Studies , Severity of Illness Index , China/epidemiology , Predictive Value of Tests , Insulin Resistance
13.
J Colloid Interface Sci ; 678(Pt B): 984-991, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39270398

ABSTRACT

In this work, combining the density functional theory (DFT) calculations and the ab initio molecular dynamics (AIMD) simulations, the water adsorption behavior, including the molecular and the dissociative adsorption on the negatively polarized (0 0 1) surface of ferroelectric PbTiO3 was comprehensively studied. Our theoretical results show that the dissociative adsorption of water is more energetically favorable than the molecular adsorption on the pristine PbTiO3 (0 0 1) surface. It has been also found that introducing surface oxygen vacancies (OV) can enhance the thermodynamic stability of dissociative adsorption of water molecule. The AIMD simulations demonstrate that water molecule can spontaneously dissociate into hydrogen atoms (H) and hydroxyl groups (OH) on the pristine PbTiO3 (0 0 1) surface at room temperature. Moreover, the surface OV can effectively facilitate the dissociative adsorption of water molecules, leading to a high surface coverage of OH group, thus giving rise to a high reactivity for water splitting on defective PbTiO3 (0 0 1) surface with OV. Our results not only comprehensively understand the reason for the photocatalytic water oxidation activity of single domain PbTiO3, but also shed light on the development of high performance ferroelectric photocatalysts for water splitting.

14.
Article in English | MEDLINE | ID: mdl-39236286

ABSTRACT

The role of circRNAs in sepsis-induced lung injury is not clear. This study investigated the role and molecular mechanism of a novel circRNA in sepsis-induced lung injury and explored its prognostic value in sepsis patients. In this study, aberrant circRNA expression profiling in lung tissues from mice with sepsis-induced lung injury was analyzed using high-throughput sequencing. CircRNA-Cacna1d was verified by quantitative real-time polymerase chain reaction, and its biological function in sepsis-induced lung injury was validated in vitro and in vivo. The interactions among circRNA-Cacna1d, miRNAs, and their downstream genes were verified. Furthermore, the clinical value of circRNA-Cacna1d in peripheral blood from sepsis patients was also evaluated. We found that circRNA-Cacna1d expression was significantly increased in lung tissues of sepsis mice and microvascular endothelial cells after lipopolysaccharide (LPS) challenge. CircRNA-Cacna1d knockdown alleviated inflammatory response and ameliorated the permeability of vascular endothelium, thereby mitigating sepsis-induced lung injury and significantly improving the survival rate of sepsis mice. Mechanistically, circRNA-Cacna1d directly interacted with miRNA-185-5p and functioned as a miRNA sponge to regulate the RhoA/ROCK1 signaling pathway. The expression level of circRNA-Cacna1d in patients with early sepsis was significantly higher than that in the healthy controls. Higher levels of circRNA-Cacna1d in sepsis patients were associated with increased disease severity and poorer outcomes. In conclusions, circRNA-Cacna1d may play a role in sepsis-induced lung injury by regulating the RhoA/ROCK1 axis by acting as miRNA-185-5p sponge. CircRNA-Cacna1d is a potential therapeutic target for sepsis-induced lung injury and a prognostic biomarker in sepsis.

15.
Blood ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39226462

ABSTRACT

Genetic studies have identified numerous regions associated with plasma fibrinogen levels in Europeans, yet missing heritability and limited inclusion of non-Europeans necessitates further studies with improved power and sensitivity. Compared with array-based genotyping, whole genome sequencing (WGS) data provides better coverage of the genome and better representation of non-European variants. To better understand the genetic landscape regulating plasma fibrinogen levels, we meta-analyzed WGS data from the NHLBI's Trans-Omics for Precision Medicine (TOPMed) program (n=32,572), with array-based genotype data from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium (n=131,340) imputed to the TOPMed or Haplotype Reference Consortium panel. We identified 18 loci that have not been identified in prior genetic studies of fibrinogen. Of these, four are driven by common variants of small effect with reported MAF at least 10 percentage points higher in African populations. Three signals (SERPINA1, ZFP36L2, and TLR10) contain predicted deleterious missense variants. Two loci, SOCS3 and HPN, each harbor two conditionally distinct, non-coding variants. The gene region encoding the fibrinogen protein chain subunits (FGG;FGB;FGA), contains 7 distinct signals, including one novel signal driven by rs28577061, a variant common in African ancestry populations but extremely rare in Europeans (MAFAFR=0.180; MAFEUR=0.008). Through phenome-wide association studies in the VA Million Veteran Program, we found associations between fibrinogen polygenic risk scores and thrombotic and inflammatory disease phenotypes, including an association with gout. Our findings demonstrate the utility of WGS to augment genetic discovery in diverse populations and offer new insights for putative mechanisms of fibrinogen regulation.

16.
BMC Med ; 22(1): 367, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237933

ABSTRACT

BACKGROUND: Current cardiovascular prevention strategies are based on studies that seldom include valvular heart disease (VHD). The role of modifiable lifestyle factors on VHD progression and life expectancy among the elderly with different socioeconomic statuses (SES) remains unknown. METHODS: This cohort study included 164,775 UK Biobank participants aged 60 years and older. Lifestyle was determined using a five-factor scoring system covering smoking status, obesity, physical activity, diet, and sleep patterns. Based on this score, participants were then classified into "poor," "moderate," or "ideal" lifestyle groups. SES was classified as high or low based on the Townsend Deprivation Index. The association of lifestyle with major VHD progression was evaluated using a multistate mode. The life table method was employed to determine life expectancy with VHD and without VHD. RESULTS: The UK Biobank documented 5132 incident VHD cases with a mean follow-up of 12.3 years and 1418 deaths following VHD with a mean follow-up of 6.0 years. Compared to those with a poor lifestyle, women and men followed an ideal lifestyle had lower hazard ratios for incident VHD (0.66 with 95% CI, 0.59-0.73 for women and 0.77 with 95% CI, 0.71-0.83 for men) and for post-VHD mortality (0.58 for women, 95% CI 0.46-0.74 and 0.62 for men, 95% CI 0.54-0.73). When lifestyle and SES were combined, the lower risk of incident VHD and mortality were observed among participants with an ideal lifestyle and high SES compared to participants with an unhealthy lifestyle and low SES. There was no significant interaction between lifestyle and SES in their correlation with the incidence and subsequent mortality of VHD. Among low SES populations, 60-year-old women and men with VHD who followed ideal lifestyles lived 4.2 years (95% CI, 3.8-4.7) and 5.1 years (95% CI, 4.5-5.6) longer, respectively, compared to those with poor lifestyles. In contrast, the life expectancy gain for those without VHD was 4.4 years (95% CI, 4.0-4.8) for women and 5.3 years (95% CI, 4.8-5.7) for men when adhering to an ideal lifestyle versus a poor one. CONCLUSIONS: Adopting a healthier lifestyle can significantly slow down the progression from free of VHD to incident VHD and further to death and increase life expectancy for both individuals with and without VHD within diverse socioeconomic elderly populations.


Subject(s)
Heart Valve Diseases , Life Expectancy , Life Style , Humans , Female , Male , Aged , United Kingdom/epidemiology , Middle Aged , Heart Valve Diseases/epidemiology , Heart Valve Diseases/mortality , Disease Progression , Aged, 80 and over , Cohort Studies , Social Class
17.
EBioMedicine ; 107: 105306, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39191175

ABSTRACT

BACKGROUND: Variation in thyroid function parameters within the normal range has been observationally associated with adverse health outcomes. Whether those associations reflect causal effects is largely unknown. METHODS: We systematically tested associations between genetic differences in thyrotropin (TSH) and free thyroxine (FT4) within the normal range and more than 1100 diseases and more than 6000 molecular traits (metabolites and proteins) in three large population-based cohorts. This was performed by combining individual and summary level genetic data and using polygenic scores and Mendelian randomization (MR) methods. We performed a phenome-wide MR study in the OpenGWAS database covering thousands of complex phenotypes and diseases. FINDINGS: Genetically predicted TSH or FT4 levels within the normal range were predominately associated with thyroid-related outcomes, like goitre. The few extra-thyroidal outcomes that were found to be associated with genetic liability towards high but normal TSH levels included atrial fibrillation (odds ratio = 0.92, p-value = 2.13 × 10-3), thyroid cancer (odds ratio = 0.57, p-value = 2.97 × 10-4), and specific biomarkers, such as sex hormone binding globulin (ß = -0.046, p-value = 1.33 × 10-6) and total cholesterol (ß = 0.027, p-value = 5.80 × 10-3). INTERPRETATION: In contrast to previous studies that have described the association with thyroid hormone levels and disease outcomes, our genetic approach finds little evidence of an association between genetic differences in thyroid function within the normal range and non-thyroidal phenotypes. The association described in previous studies may be explained by reverse causation and confounding. FUNDING: This research was funded by the Swiss National Science Foundation (P1BEP3_200041). The Fenland study (DOI 10.22025/2017.10.101.00001) is funded by the Medical Research Council (MC_UU_12015/1, MC_PC_13046 and MC_UU_00006/1). The EPIC-Norfolk study (DOI 10.22025/2019.10.105.00004) has received funding from the Medical Research Council (MR/N003284/1, MC-UU_12015/1, MC_PC_13048 and MC_UU_00006/1).


Subject(s)
Mendelian Randomization Analysis , Thyroid Hormones , Humans , Thyroid Hormones/blood , Thyroid Hormones/metabolism , Biomarkers , Thyrotropin/blood , Phenotype , Polymorphism, Single Nucleotide , Thyroxine/blood , Genetic Predisposition to Disease , Multifactorial Inheritance , Genome-Wide Association Study , Thyroid Function Tests , Thyroid Diseases/genetics , Thyroid Diseases/diagnosis , Thyroid Diseases/blood
18.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-39158360

ABSTRACT

Protein kinase A (PKA) plays an important role in cellular life activities. Recently, PKA was found to bind to the inhibitor of nuclear factor-kappaB (IκB), a key protein in the nuclear factor-kappaB (NF-κB) pathway, to form a complex involved in the regulation of inflammatory response. However, the role of PKA in the anti-inflammatory of goose fatty liver is still unclear. A total of 14 healthy 70-d-old male Lander geese were randomly divided into a control group and an overfeeding group. Inflammation level was analyzed by histopathological method in the liver. The mRNA and protein abundance of PKA and tumor necrosis factor-alpha (TNFα), as well as the ubiquitination level of PKA, were detected. Moreover, goose primary hepatocytes were cotreated with glucose, harringtonine, and carbobenzoxy-l-leucyl-l-leucyl-l-leucinal (MG132). Finally, the co-immunoprecipitated samples of PKA from the control and overfeeding group were used for protein mass spectrometry. The results showed that no difference in PKA mRNA expression was observed (P > 0.05), while the PKA protein level in the overfed group was significantly reduced (P < 0.05) when compared with the control group. The ubiquitination level of PKA was higher than that of the control group in fatty liver. The mRNA expression of PKA was elevated but protein abundance was reduced in goose primary hepatocytes with 200 mmol/L glucose treatment (P < 0.05). The PKA protein abundance was dramatically reduced in hepatocytes treated with harringtonine (P < 0.01) when compared with the glucose-supplemented group. Nevertheless, MG132 tended to alleviate the inhibitory effect of harringtonine on PKA protein abundance (P = 0.081). There was no significant difference in TNFα protein level among glucose-treated groups and control (P > 0.05). Protein mass spectrometry analysis showed that 29 and 76 interacting proteins of PKA were screened in goose normal and fatty liver, respectively. Validation showed that PKA interacted with the E3 ubiquitination ligases ring finger protein 135 (RNF135) and potassium channel modulatory factor 1 (KCMF1). In summary, glucose may inhibit the inflammatory response in goose fatty liver by increasing the ubiquitination level of PKA. Additionally, RNF135 and KCMF1 may be involved in the regulation of PKA ubiquitination level as E3 ubiquitination ligases.


No obvious pathological symptoms such as inflammation were observed in fatty goose liver, suggesting that there is a unique mechanism to inhibit the development of inflammation during the goose fatty liver formation. Previous studies have shown that high glucose activated the ubiquitin­proteasome. Protein kinase A (PKA) can interact with a key protein in the nuclear factor-kappaB pathway to activate the pathway and trigger inflammatory response. To further understand how inflammation is suppressed during goose fatty liver formation. The present study showed that inflammation and PKA protein level were reduced in goose fatty liver. Meanwhile, PKA can be modified by ubiquitination in goose liver and hepatocytes. The result of the study implied that glucose deposited during goose fatty liver formation may reduce the PKA protein content by increasing the PKA ubiquitination level, thereby inhibiting the inflammatory response. Our study not only contributes to elucidate the new mechanism for suppressed inflammation in goose fatty liver but also provides a reference for the study of fatty liver in other animals.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Fatty Liver , Geese , Glucose , Ubiquitination , Animals , Male , Cyclic AMP-Dependent Protein Kinases/metabolism , Ubiquitination/drug effects , Glucose/metabolism , Fatty Liver/veterinary , Fatty Liver/metabolism , Inflammation/veterinary , Poultry Diseases , Hepatocytes/drug effects , Hepatocytes/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Liver/drug effects , Liver/metabolism
19.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(4): 509-518, 2024 Aug 25.
Article in English, Chinese | MEDLINE | ID: mdl-39183056

ABSTRACT

OBJECTIVES: To synthesize new bakuchiol aminoguanidine derivatives and test their effect on viability and apoptosis of human triple-negative breast cancer (TNBC) cells. METHODS: Two bakuchiol derivatives 1 and 2 were obtained by formylation and Shiff base reaction of bakuchol. The structures of derivatives 1 and 2 were identified by 1H-NMR, 13C-NMR, and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) analysis. Human TNBC MDA-MB-231 cells were treated with bakuchiol and its derivatives and cell viability was measured by MTT assay. Apoptosis was detected by fluorescence microscopy and flow cytometry with Annexin V-FITC/PI staining. The expressions of apoptosis-related proteins were analyzed with Western blotting. The JC-1 and reactive oxygen species (ROS) assay kits were used to determine the effect of new bakuchiol derivatives on mitochondrial function. RESULTS: Based on spectroscopic analysis, a new bakuchiol schiff base derivative was elucidated as 2-{(E)-5-[(S, E)-3, 7-dimethyl-3-vinylocta-1, 6-dien-1-yl]-2-hydroxylbenzylidene} hydrazine-1-carboximidamide (derivative 2). Bakuchiol and its derivatives 1 and 2 all showed cytotoxic activity against the MDA-MB-231 cells. Derivative 2 exhibited the most potent cytotoxic activity to MDA-MB-231 cell with IC50 of (13.11±1.09), (6.91±1.78), and (2.23±1.32) µmol/L after 24, 48, and 72 h. It had low toxicity to normal mouse liver (AML-12) cells with IC50 of (31.23±1.58) µmol/L at 72 h. Fluorescence microscopy and flow cytometry demonstrated apoptosis in breast cancer cells after treating with derivative 2 in a concentration dependent manner. Western blotting showed that after derivative 2 treatment, the expression of apoptosis-related proteins cytochrome C, cleaving caspase-3 and Bax/Bcl-2 radio in MDA-MB-231 cells increased; in addition, apoptosis was associated with the decreased mitochondrial membrane potential and increased reactive oxygen species accumulation. CONCLUSIONS: The novel bakuchiol aminoguanidine derivative (derivative 2) is capable of inducing apoptosis in MDA-MB-231 cells, but has low toxicity to normal liver cells, suggesting that it may be used as a lead compound for an anti-TNBC agent.


Subject(s)
Apoptosis , Guanidines , Phenols , Reactive Oxygen Species , Triple Negative Breast Neoplasms , Humans , Apoptosis/drug effects , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Cell Line, Tumor , Female , Phenols/pharmacology , Guanidines/pharmacology , Reactive Oxygen Species/metabolism , Cell Survival/drug effects
20.
Autophagy ; : 1-13, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39172027

ABSTRACT

Long-chain free fatty acids (FFAs) accumulation and oxidative toxicity is a major cause for several pathological conditions. The mechanisms underlying FFA cytotoxicity remain elusive. Here we show that palmitic acid (PA), the most abundant FFA in the circulation, induces S403 phosphorylation of SQSTM1/p62 (sequestosome 1) and its aggregation, which sequesters KEAP1 and activates the non-canonical SQSTM1-KEAP1-NFE2L2 antioxidant pathway. The PA-induced SQSTM1 S403 phosphorylation and aggregation are dependent on SQSTM1 K7-D69 hydrogen bond formation and dimerization in the Phox and Bem1 (PB1) domain, which facilitates the recruitment of TBK1 that phosphorylates SQSTM1 S403. The ubiquitin E3 ligase TRIM21 ubiquitinates SQSTM1 at the K7 residue and abolishes the PB1 dimerization, S403 phosphorylation, and SQSTM1 aggregation. TRIM21 is oxidized at C92, C111, and C114 to form disulfide bonds that lead to its oligomerization and decreased E3 activity. Mutagenizing the three C residues to S (3CS) abolishes TRIM21 oligomerization and increases its E3 activity. TRIM21 ablation leads to decreased SQSTM1 K7 ubiquitination, hence elevated SQSTM1 S403 phosphorylation and aggregation, which confers protection against PA-induced oxidative stress and cytotoxicity. Therefore, TRIM21 is a negative regulator of SQSTM1 phosphorylation, aggregation, and the antioxidant sequestration function. TRIM21 is oxidized to reduce its E3 activity that helps enhance the SQSTM1-KEAP1-NFE2L2 antioxidant pathway. Inhibition of TRIM21 May be a viable strategy to protect tissues from lipotoxicity resulting from long-chain FFAs.Abbreviations: ER: endoplasmic reticulum; FFA: free fatty acid; HMOX1/HO-1: heme oxygenase 1; IB: immunoblotting; IF: immunofluorescence; IP: immunoprecipitation; KEAP1: kelch like ECH associated protein 1; MASH: metabolic dysfunction-associated steatohepatitis; MEF: mouse embryonic fibroblast; NFE2L2/Nrf2: NFE2 like BZIP transcription factor 2; PA: palmitic acid; PB1: Phox and Bem 1; ROS: reactive oxygen species; SLD: steatotic liver disease; SQSTM1: sequestosome 1; TBK1: TANK-binding kinase 1; TRIM21: tripartite motif containing 21.

SELECTION OF CITATIONS
SEARCH DETAIL