Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.182
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3912-3923, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39099365

ABSTRACT

In this study, we delved into the prototypical components and metabolites of Platycodonis Radix extracts(PRE) from Tongcheng city in plasma, urine and feces of rats, and revealed its metabolic pathways and metabolic rules in vivo. The prototypical components and metabolites of PRE in rats were characterized and identified by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) and mass defect filter(MDF). The biological samples were analyzed by ACQUITY UPLC BEH C_(18)(2.1 mm×100 mm, 1.7 µm), with 0.1% formic acid water(A)-0.1% formic acid acetonitrile(B) as mobile phase, and the biological samples were analyzed in negative ion mode by electrospray ionization mass spectrometry(ESI-MS). Twelve prototypical saponins and twenty-seven metabolites were detected in plasma, urine and feces of rats treated with PRE by oral administration. Eleven prototypical components and nine metabolites were detected in plasma, eleven prototypical components and eight metabo-lites were detected in urine, and ten prototypical components and twenty metabolites were detected in feces. Further studies showed that the metabolic pathways of PRE in rats mainly include oxidation, reduction, acetylation, stepwise hydrolytic deglycosylation, glucuronidation and so on. This study provides a scientific basis for clarifying the pharmacological basis and mechanism of PRE from Tongcheng city.


Subject(s)
Drugs, Chinese Herbal , Metabolic Networks and Pathways , Platycodon , Rats, Sprague-Dawley , Animals , Rats , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/chemistry , Male , Chromatography, High Pressure Liquid , Platycodon/chemistry , Feces/chemistry , Spectrometry, Mass, Electrospray Ionization , Saponins/metabolism , China
2.
Imeta ; 3(4): e218, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39135692

ABSTRACT

The MASS cohort comprises 2000 ICU patients with severe pneumonia, covering community-acquired pneumonia, hospital-acquired pneumonia, and ventilator-associated pneumonia, sourced from 19 hospitals across 10 cities in three provinces. A wide array of samples including bronchoalveolar lavage fluid, sputum, feces, and whole blood are longitudinally collected throughout patients' ICU stays. The cohort study seeks to uncover the dynamics of lung and gut microbiomes and their associations with severe pneumonia and host susceptibility, integrating deep metagenomics and transcriptomics with detailed clinical data.

3.
J Hazard Mater ; 478: 135527, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39151363

ABSTRACT

The disposable paper cups (DPCs) release millions of microplastics (MPs) when used for hot beverages. However, the tissue-specific deposition and toxic effects of MPs and associated toxins remain largely unexplored, especially at daily consumption levels. We administered MPs and associated toxins extracted from leading brand DPCs to pregnant mice, revealing dose-responsive harmful effects on fetal development and maternal physiology. MPs were detected in all 13 examined tissues, with preferred depositions in the fetus, placenta, kidney, spleen, lung, and heart, contributing to impaired phenotypes. Brain tissues had the smallest MPs (90.35 % < 10 µm). A dose-responsive shift in the cecal microbiome from Firmicutes to Bacteroidetes was observed, coupled with enhanced biosynthesis of microbial fatty acids. A moderate consumption of 3.3 cups daily was sufficient to alter the cecal microbiome, global metabolic functions, and immune health, as reflected by tissue-specific transcriptomic analyses in maternal blood, placenta, and mammary glands, leading to neurodegenerative and miscarriage risks. Gene-based benchmark dose framework analysis suggested a safe exposure limit of 2 to 4 cups/day in pregnant mice. Our results highlight tissue-specific accumulation and metabolic and reproductive toxicities in mice at DPC consumption levels presumed non-hazardous, with potential health implications for pregnant women and fetuses.

4.
Plants (Basel) ; 13(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39124145

ABSTRACT

Brown cotton is a major cultivar of naturally colored cotton, and brown cotton fibers (BCFs) are widely utilized as raw materials for textile industry production due to their advantages of being green and dyeing-pollution-free. However, the mechanisms underlying the pigmentation in fibers are still poorly understood, which significantly limits their extensive applications in related fields. In this study, we conducted a multidimensional comparative analysis of the transcriptomes and metabolomes between brown and white fibers at different developmental periods to identify the key genes and pathways regulating the pigment deposition. The transcriptomic results indicated that the pathways of flavonoid biosynthesis and phenylpropanoid biosynthesis were significantly enriched regulatory pathways, especially in the late development periods of fiber pigmentation; furthermore, the genes distributed in the pathways of PAL, CHS, F3H, DFR, ANR, and UFGT were identified as significantly up-regulated genes. The metabolic results showed that six metabolites, namely (-)-Epigallocatechin, Apiin, Cyanidin-3-O-glucoside, Gallocatechin, Myricetin, and Poncirin, were significantly accumulated in brown fibers but not in white fibers. Integrative analysis of the transcriptomic and metabolomic data demonstrated a possible regulatory network potentially regulating the pigment deposition, in which three MYB transcription factors promote the expression levels of flavonoid biosynthesis genes, thereby inducing the content increase in (-)-Epigallocatechin, Cyanidin-3-O-glucoside, Gallocatechin, and Myricetin in BCFs. Our findings provide new insights into the pigment deposition mechanism in BCFs and offer references for genetic engineering and breeding of colored cotton materials.

5.
Clin Appl Thromb Hemost ; 30: 10760296241271394, 2024.
Article in English | MEDLINE | ID: mdl-39140859

ABSTRACT

This study explored 1-year follow-up of Parmaco-invasive strategy with half-dose recombinant human prourokinase (PHDP) in patients with acute ST-segment elevation myocardial infarction (STEMI). The follow-up endpoints were major adverse cardiovascular events (MACEs) occurring within 30 days and 1 year, as well as postoperative bleeding events. The study ultimately included 150 subjects, with 75 in the primary percutaneous coronary intervention (PPCI) group and 75 in the PHDP group. This study found that the PHDP group had a shorter FMC-reperfusion time (42.00 min vs 96.00 min, P < 0.001). During PCI, the PHDP group had a lower percutaneous transluminal coronary angioplasty (PTCA) (P = 0.021), intropin (P = 0.002) and tirofiban (P < 0.001) use. And the incidence of intraoperative arrhythmia, malignant arrhythmia, and slow flow/no-reflow was lower in the PHDP group (P < 0.001). At the 30-day follow-up, there was a significantly higher proportion of patients in the PPCI group who were readmitted due to unstable angina (P = 0.037). After 1 year of follow-up, there was no statistically significant difference in MACEs between the two groups (P = 0.500). The incidence of postoperative major bleeding, intracranial bleeding, and minor bleeding did not differ between the PHDP and PPCI groups (P > 0.05). The PHDP facilitates early treatment of infarct-related vessels, shortens FMC-reperfusion time, and does not increase the risk of MACEs.


Subject(s)
ST Elevation Myocardial Infarction , Humans , Male , Female , ST Elevation Myocardial Infarction/surgery , Middle Aged , Follow-Up Studies , Aged , Prognosis , Percutaneous Coronary Intervention/methods , Recombinant Proteins/therapeutic use
6.
Nat Commun ; 15(1): 6917, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134556

ABSTRACT

Fatigue failure is invariably the most crucial failure mode for metallic structural components. Most microstructural strategies for enhancing fatigue resistance are effective in suppressing either crack initiation or propagation, but often do not work for both synergistically. Here, we demonstrate that this challenge can be overcome by architecting a gradient structure featuring a surface layer of nacre-like nanolaminates followed by multi-variant twinned structure in pure titanium. The polarized accommodation of highly regulated grain boundaries in the nanolaminated layer to cyclic loading enhances the structural stability against lamellar thickening and microstructure softening, thereby delaying surface roughening and thus crack nucleation. The decohesion of the nanolaminated grains along horizonal high-angle grain boundaries gives rise to an extraordinarily high frequency (≈1.7 × 103 times per mm) of fatigue crack deflection, effectively reducing fatigue crack propagation rate (by 2 orders of magnitude lower than the homogeneous coarse-grained counterpart). These intriguing features of the surface nanolaminates, along with the various toughening mechanisms activated in the subsurface twinned structure, result in a fatigue resistance that significantly exceeds those of the homogeneous and gradient structures with equiaxed grains. Our work on architecting the surface nanolaminates in gradient structure provides a scalable and sustainable strategy for designing more fatigue-resistant alloys.

7.
ACS Appl Mater Interfaces ; 16(32): 42762-42771, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39096245

ABSTRACT

Elastic aerogels have become a research hot spot in both academia and industry recently. The reported elastic aerogels are all made of hard materials by controlling their shapes. Herein we report an elastic aerogel made of a polymer elastomer with entropy elasticity. In the aerogel, cross-linked carboxyl nitrile rubber nanoparticles with hydrophilicity are dispersed in hydrophobic derivative of styrene-maleic anhydride alternating copolymer, forming a very special micro-nano surface structure with hydrophilic protrusions and hydrophobic depressions on the aerogel wall; therefore, the aerogel is not only superelastic but also superamphiphilic. A leak-free phase-change composite was prepared using the aerogel and paraffin, which can maintain at phase change temperature of paraffin for a longer time than the traditional one. The aerogel is also extremely suitable for desalination evaporators in solar-driven interfacial evaporation technology due to its superamphiphilicity, superelasticity, and ability to absorb sunlight. Exceptional evaporation rate of 2.78 kg·m-2·h-1 and evaporation efficiency of 170% could be reached even without using expensive light-absorbing materials. The evaporation rate exceeds that of most evaporators with expensive light-absorbing materials, and the evaporation efficiency exceeds the theoretical limit of conventional 2D solar evaporators. Both the phase-change composite and the evaporator can be easily recovered because the novel superelastic aerogel reported in this work is also recyclable.

8.
CNS Neurosci Ther ; 30(7): e14853, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39034473

ABSTRACT

AIMS: Intracerebral hemorrhage (ICH) is a condition that arises due to the rupture of cerebral blood vessels, leading to the flow of blood into the brain tissue. One of the pathological alterations that occurs during an acute ICH is an impairment of the blood-brain barrier (BBB), which leads to severe perihematomal edema and an immune response. DISCUSSION: A complex interplay between the cells of the BBB, for example, pericytes, astrocytes, and brain endothelial cells, with resident and infiltrating immune cells, such as microglia, monocytes, neutrophils, T lymphocytes, and others accounts for both damaging and protective mechanisms at the BBB following ICH. However, the precise immunological influence of BBB disruption has yet to be richly ascertained, especially at various stages of ICH. CONCLUSION: This review summarizes the changes in different cell types and molecular components of the BBB associated with immune-inflammatory responses during ICH. Furthermore, it highlights promising immunoregulatory therapies to protect the integrity of the BBB after ICH. By offering a comprehensive understanding of the mechanisms behind BBB damage linked to cellular and molecular immunoinflammatory responses after ICH, this article aimed to accelerate the identification of potential therapeutic targets and expedite further translational research.


Subject(s)
Blood-Brain Barrier , Cerebral Hemorrhage , Humans , Blood-Brain Barrier/pathology , Blood-Brain Barrier/immunology , Cerebral Hemorrhage/immunology , Cerebral Hemorrhage/pathology , Cerebral Hemorrhage/metabolism , Animals
9.
Environ Technol ; : 1-20, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955510

ABSTRACT

To find out the most contaminated street region and protect the pedestrian with the photo-catalytic equipment to decrease the hazard of oxynitride (NOx), Computational Fluid Dynamics (CFD) simulation could be used to research the main factor affecting the statistical characteristics of the oxynitride distribution in the urban street canyon with the photo-catalytic building walls. Additionally, the connection was investigated and focused on the swirling flow and oxynitride concentration to find out the root of the main factor affecting oxynitride distribution. The simulation results showed that there was one three-dimensional swirling flow in the whole canyon and the statistical concentration was straightforwardly related to the swirling or whirling flow structure (such as eddy). The characteristics had been confirmed that the whirling flow structure affected the complex oxynitride distribution in the street canyon with the photo-catalytic building walls. Furthermore, one formula was found which described the oxynitride concentration constrained by the street canyon. This study illustrated that different sections in the canyon had various patterns of the whirling flow structure (swirling flow) and oxynitride. In the symmetrical portion of the street canyon (in the middle of the street length), there is one concise equation to describe the NOx concentration affected by the turbulence intensity. Moreover, the equation was presented as CR = 1.094 + 0.11e-I, where I was the turbulence intensity and CR was the oxynitride relative concentration in the street canyon.

10.
J Glob Health ; 14: 04111, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968002

ABSTRACT

Background: Poor oral hygiene is associated with overall wellness, but evidence regarding associations of oral health with all-cause mortality remain inconclusive. We aimed to examine the associations of oral health with all-cause and cause-specific mortality in middle-aged and older Chinese adults. Methods: 28 006 participants were recruited from 2003-2008 and followed up until 2021. Oral health was assessed by face-to-face interview and causes of death was identified via record linkage. Cox regression yielded hazard ratios (HRs) and 95% confidence intervals (CIs) with adjustment of multiple potential confounders. Results: During an average of 14.3 years of follow-up, we found that a lower frequency of toothbrushing was associated with higher risks of all-cause mortality with a dose-response pattern (P for trend <0.001). Specially, the adjusted HR (95% CI) (vs. ≥ twice/d) was 1.16 (1.10, 1.22) (P < 0.001) for brushing once/d and 1.27 (1.00, 1.61) (P = 0.048) for < once/d. Similar associations were also found for cardiovascular disease (CVD), stroke, and respiratory disease mortality, but not for ischemic heart disease (IHD) and cancer mortality. A greater number of missing teeth was also associated with higher risks of all-cause, CVD, stroke, and respiratory disease mortality with a dose-response pattern (all P for trend <0.05). The association of missing teeth with all-cause mortality was stronger in lower-educated participants. Conclusions: Both less frequent toothbrushing and a greater number of missing teeth were associated with higher risks of all-cause, CVD, stroke, and respiratory disease mortality, showing dose-response patterns, but not with IHD and cancer mortality. Moreover, the dose-response association of missing teeth with all-cause mortality was stronger in lower-educated participants.


Subject(s)
Cause of Death , Oral Health , Humans , Male , Female , Oral Health/statistics & numerical data , Aged , China/epidemiology , Middle Aged , Follow-Up Studies , Cohort Studies , Toothbrushing/statistics & numerical data , Cardiovascular Diseases/mortality , Risk Factors , Mortality/trends , Biological Specimen Banks , East Asian People
11.
Exp Cell Res ; 441(1): 114168, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39004201

ABSTRACT

Intramuscular fat (IMF) content significantly impacts meat quality. influenced by complex interactions between skeletal muscle cells and adipocytes. Adipogenesis plays a pivotal role in IMF formation. Exosomes, extracellular membranous nanovesicles, facilitate intercellular communication by transporting proteins, nucleic acids (DNA and RNA), and other biomolecules into target cells, thereby modulating cellular behaviors. Recent studies have linked exosome-derived microRNAs (miRNAs) and other cargo to adipogenic processes. Various cell types, including skeletal muscle cells, interact with adipocytes via exosome secretion and uptake. Exosomes entering adipocytes regulate adipogenesis by modulating key signaling pathways, thereby influencing the extent and distribution of IMF deposition. This review comprehensively explores the origin, formation, and mechanisms of exosome action, along with current research and their applications in adipogenesis. Emphasis is placed on exosome-mediated regulation of miRNAs, non-coding RNAs (ncRNAs), proteins, lipids, and other biomolecules during adipogenesis. Leveraging exosomal contents for genetic breeding and treating obesity-related disorders is discussed. Insights gathered contribute to advancing understanding and potential therapeutic applications of exosome-regulated adipogenesis mechanisms.


Subject(s)
Adipogenesis , Exosomes , MicroRNAs , Adipogenesis/genetics , Exosomes/metabolism , Exosomes/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Animals , Adipocytes/metabolism
12.
Open Med (Wars) ; 19(1): 20240995, 2024.
Article in English | MEDLINE | ID: mdl-38978960

ABSTRACT

Osteosarcoma is a highly aggressive bone tumor primarily affecting children and adolescents. Despite advancements in treatment modalities, the prognosis for osteosarcoma patients remains poor, emphasizing the need for a deeper understanding of its underlying mechanisms. In recent years, the concept of cancer stem cells (CSCs) has emerged as a crucial factor in tumor initiation, progression, and therapy resistance. These specialized subpopulations of cells possess self-renewal capacity, tumorigenic potential, and contribute to tumor heterogeneity. Sox9, a transcription factor known for its critical role in embryonic development and tissue homeostasis, has been implicated in various malignancies, including osteosarcoma. This review aims to summarize the current knowledge regarding the role of Sox9 in CSCs in osteosarcoma and its potential implications as a prognosis and therapeutic target.

13.
Diabetes Metab Syndr Obes ; 17: 2619-2625, 2024.
Article in English | MEDLINE | ID: mdl-38974951

ABSTRACT

Purpose: To examine the risk of type 2 diabetes mellitus in non-obese patients with pancreatic fatty infiltration through abdominal computed tomography (CT) quantitation. Patients and Methods: We carried out a retrospective analysis of abdominal CT and inpatient medical records of 238 inpatients from July 2019 to April 2021. The patients were divided into a normal non-obese group (BMI < 25, n = 135) and diabetic non-obese group (BMI < 25, n = 103). Abdominal CT-related parameters included body width; mean CT values of the pancreas, liver, and spleen; difference between pancreas and spleen CT values (P-S); pancreas-to-spleen attenuation ratio (P/S); and liver-to-spleen attenuation ratio (L/S). Logistic regression was used to estimate the risk factors for comorbid diabetes in a non-obese population. Results: The P-values of the pancreas CT value, P-S, P/S, body width, and L/S were all <0.05 and correlated to comorbid diabetes in non-obese patients. Worsening pancreatic fatty infiltration increased the risk of developing diabetes. Using a P/S of 1.0 as reference, every successive decrease in this ratio by 0.1 increases patient risk by 3.981, 4.452, 6.037, and 12.937 times. Conclusion: The risk of developing type 2 diabetes mellitus in non-obese patients increases with the degree of pancreatic fatty infiltration as assessed by CT.

14.
Anal Chem ; 96(29): 11682-11689, 2024 07 23.
Article in English | MEDLINE | ID: mdl-38979688

ABSTRACT

Cell death is a fundamental biological process with different modes including apoptosis and necrosis. In contrast to programmed apoptosis, necrosis was previously considered disordered and passive, but it is now being realized to be under regulation by certain biological pathways. However, the intracellular dynamics that coordinates with cellular structure changes during necrosis remains unknown, limiting our understanding of the principles of necrosis. Here, we characterized the spatiotemporal intracellular diffusion dynamics in cells undergoing necrosis, using three-dimensional single-particle tracking of quantum dots. We found temporally increased diffusion rates in necrotic cells and spatially enhanced diffusion heterogeneity in the cell periphery, which could be attributed to the reduced molecular crowding resulting from cell swelling and peripheral blebbing, respectively. Moreover, the three-dimensional intracellular diffusion transits from strong anisotropy to nearly isotropy, suggesting a remodeling of the cytoarchitecture that relieves the axial constraint on intracellular diffusion during necrosis. Our results reveal the remarkable alterations of intracellular diffusion dynamics and biophysical properties in necrosis, providing insight into the well-organized nonequilibrium necrotic cell death from a biophysical perspective.


Subject(s)
Necrosis , Quantum Dots , Quantum Dots/chemistry , Humans , Diffusion , HeLa Cells
15.
J Hazard Mater ; 477: 135295, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39047556

ABSTRACT

Landfill leachate contributes significantly to the presence of pharmaceuticals and personal care products (PPCPs) in the environment, and is a crucial source of contamination. To examine the occurrence of PPCPs and microbial communities, this study comprehensively investigated the concentrations of PPCPs and the abundance of microorganisms in the leachate from 17 municipal landfills across China. Generally, Lidocaine, Linear alkylbenzene sulfonate-C11, and Triclocarban, which are closely associated with human activities, exhibited a detection frequency of 100 % in the leachate. Driven by consumer demand, analgesic and antipyretic drugs have emerged as the most prominent PPCPs in leachate (accounting for 39.9 %). Notably, the Ibuprofen peaked at 56.3 µg/L. Regarding spatial distribution, the contamination of PPCPs in leachates from the eastern regions of China was significantly higher than that in other regions, owing to the level of economic development and demographic factors. Furthermore, the 16S rRNA results revealed significant differences in microbial communities among the leachates from different areas. Although the impact of PPCPs on microbial communities may not be as significant as that of environmental factors, most positive correlations between PPCPs and microorganisms indicate their potential role in providing nutrients and creating favorable conditions for microbial growth. Overall, this research offers new perspectives on the residual features of PPCPs and the microbial community structure in leachates from various regions in China.


Subject(s)
Cosmetics , Environmental Monitoring , RNA, Ribosomal, 16S , Waste Disposal Facilities , Water Pollutants, Chemical , China , Water Pollutants, Chemical/analysis , Pharmaceutical Preparations/analysis , Cosmetics/analysis , RNA, Ribosomal, 16S/genetics , Microbiota , Bacteria/classification , Cities
16.
Elife ; 132024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959062

ABSTRACT

Bacterial exonuclease III (ExoIII), widely acknowledged for specifically targeting double-stranded DNA (dsDNA), has been documented as a DNA repair-associated nuclease with apurinic/apyrimidinic (AP)-endonuclease and 3'→5' exonuclease activities. Due to these enzymatic properties, ExoIII has been broadly applied in molecular biosensors. Here, we demonstrate that ExoIII (Escherichia coli) possesses highly active enzymatic activities on ssDNA. By using a range of ssDNA fluorescence-quenching reporters and fluorophore-labeled probes coupled with mass spectrometry analysis, we found ExoIII cleaved the ssDNA at 5'-bond of phosphodiester from 3' to 5' end by both exonuclease and endonuclease activities. Additional point mutation analysis identified the critical residues for the ssDNase action of ExoIII and suggested the activity shared the same active center with the dsDNA-targeted activities of ExoIII. Notably, ExoIII could also digest the dsDNA structures containing 3'-end ssDNA. Considering most ExoIII-assisted molecular biosensors require the involvement of single-stranded DNA (ssDNA) or nucleic acid aptamer containing ssDNA, the activity will lead to low efficiency or false positive outcome. Our study revealed the multi-enzymatic activity and the underlying molecular mechanism of ExoIII on ssDNA, illuminating novel insights for understanding its biological roles in DNA repair and the rational design of ExoIII-ssDNA involved diagnostics.


Subject(s)
DNA, Single-Stranded , Escherichia coli , Exodeoxyribonucleases , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/enzymology , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics
17.
Eur J Cardiothorac Surg ; 66(2)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39073900

ABSTRACT

OBJECTIVES: Ground-glass nodules-featured lung cancer have been identified in some teenagers in recent years. This study aims to investigate the characteristics and surgical outcomes of these patients and explore proper management strategy. METHODS: Patients aged ≤20 with incidentally diagnosed lung cancer were retrospectively reviewed from February 2016 to March 2023. Based on lymph node evaluation status, these patients were divided into non-lymph node evaluation and lymph node evaluation groups. The clinical and pathological characteristics were analysed. RESULTS: A total of 139 teenage patients were included, with an obviously increased cases observed from 2019, corresponding to the COVID-19 pandemic. The median age of the 139 patients was 18 years (range 12-20). Eighty-five patients had pure ground-glass nodules, while others had mixed ground-glass nodules. The mean diameter of nodules was 8.87 ± 2.20 mm. Most of the patients underwent wedge resection (64%) or segmentectomy (31.7%). Fifty-two patients underwent lymph node sampling or dissection. None of these patients had lymph node metastasis. The majority of lesions were adenocarcinoma in situ (63 cases) and minimally invasive adenocarcinoma (72 cases), while four lesions were invasive adenocarcinoma. The median follow-up time was 2.46 years, and none of these patients experienced recurrence or death during follow-up. The lymph node evaluation group had longer hospital stays (P < 0.001), longer surgery time (P < 0.001), and greater blood loss (P = 0.047) than the non-lymph node evaluation group. CONCLUSIONS: The COVID-19 pandemic significantly increased the number of teenage patients incidentally diagnosed with lung cancer, presenting as ground-glass nodules on CT scans. These patients have favourable surgical outcomes. We propose a management strategy for teenage patients, and suggest that sub-lobar resection without lymph node dissection may be an acceptable surgical procedure for these patients.


Subject(s)
Adenocarcinoma of Lung , COVID-19 , Lung Neoplasms , Pneumonectomy , Humans , Male , Adolescent , Female , Retrospective Studies , Lung Neoplasms/surgery , Lung Neoplasms/pathology , COVID-19/epidemiology , Young Adult , Adenocarcinoma of Lung/surgery , Adenocarcinoma of Lung/pathology , Pneumonectomy/methods , Child , SARS-CoV-2 , Tomography, X-Ray Computed , Treatment Outcome , Lymph Node Excision
18.
Materials (Basel) ; 17(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38893879

ABSTRACT

The continuous discharge of organic dyes into freshwater resources poses a long-term hazard to aquatic life. The advanced oxidation Fenton process is a combo of adsorption and degradation of pollutants to detoxify toxic effluents, such as anti-bacterial drugs, antibiotics, and organic dyes. In this work, an activated attapulgite clay-loaded iron-oxide (A-ATP@Fe3O4) was produced using a two-step reaction, in which attapulgite serves as an enrichment matrix and Fe3O4 functions as the active degrading component. The maximum adsorption capacity (qt) was determined by assessing the effect of temperature, pH H2O2, and adsorbent. The results showed that the A-ATP@Fe3O4 achieves the highest removal rate of 99.6% under optimum conditions: 40 °C, pH = 3, H2O2 25 mM, and 0.1 g dosage of the composite. The dye removal procedure achieved adsorption and degradation equilibrium in 120 and 30 min, respectively, by following the same processes as the advanced oxidation approach. Catalytic activity, kinetics, and specified surface characteristics suggest that A-ATP@Fe3O4 is one of the most promising candidates for advanced oxidation-enrooted removal of organic dyes.

19.
EJHaem ; 5(3): 462-473, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895088

ABSTRACT

Numerous clinical studies speculated the association between multiple myeloma (MM) and inflammatory diseases; however, there is limited validation of these claims via establishing a causal relationship and revealing the underlying mechanism. This exploratory study employed bidirectional Mendelian randomization (MR) analysis to investigate the causal relationships between MM and inflammatory diseases, including atherosclerosis, asthma, ankylosing spondylitis, Alzheimer's disease (AD), Parkinson's disease (PD), sarcoidosis, inflammatory bowel disease, nonalcoholic fatty liver disease, type II diabetes, and schizophrenia (SZ). Transcriptomic and genome-wide Bayesian colocalization analyses were further applied to reveal the underlying mechanism. A significant and previously unrecognized positive association was identified between genetic predisposition to MM and the risk of SZ. Two independent case reports showed that treatment-resistant psychosis is due to underlying MM and is resolved by treating MM. From our MR analyses, various statistical methods confirmed this association without detecting heterogeneity or pleiotropy effects. Transcriptomic analysis revealed shared inflammation-relevant pathways in MM and SZ patients, suggesting inflammation as a potential pathophysiological mediator of MM's causal effect on SZ. Bayesian colocalization analysis identified rs9273086, which maps to the protein-coding region of HLA-DRB1, as a common risk variant for both MM and SZ. Polymorphism of the HLA-DRB1 allele has been implicated in AD and PD, further highlighting the impact of our results. Additionally, we confirmed that interleukin-6 (IL-6) is a risk factor for SZ through secondary MR, reinforcing the role of neuroinflammation in SZ etiology. Overall, our findings showed that genetic predisposition to MM, HLA-DRB1 polymorphism, and enhanced IL-6 signaling are associated with the increased risk of SZ, providing evidence for a causal role for neuroinflammation in SZ etiology.

20.
J Org Chem ; 89(12): 9125-9134, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38863329

ABSTRACT

A cascade reaction sequence of 1,3-dipolar cycloaddition and lactamization for the synthesis of tetrahydropyrroloisoindolone derivatives is developed. This efficient one-pot synthesis generates four bonds and two heterocyclic rings in a diastereoselective manner. Only 2 equiv of H2O are produced as the side product.

SELECTION OF CITATIONS
SEARCH DETAIL