Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Molecules ; 28(9)2023 Apr 24.
Article En | MEDLINE | ID: mdl-37175087

Ureidopyrimidone (UPy) is an important building block for constructing functional supramolecular polymers and soft materials based on their characteristic quadruple hydrogen bonds. While the evidence from the single-crystal X-ray diffraction data for the existence of linear hydrogen bonding has still been absent up to now. To obtain the crystals of UPy-containing molecules with high quality, enhanced rigidity and crystallinity are expected. Herein, an inorganic Anderson-Evans type cluster [Mn(OH)6Mo6O18]3-, which can provide suitable stiffness and charge, is used as a linker to covalently anchor two UPy units. The prepared organic-inorganic polyanion with three negative charges has a linear architecture, which is prone to form an infinite one-dimensional structure based on the supramolecular forces. The results indicate that the combination models of UPy units can be conveniently modulated by organic counter cations with different sizes, and therefore three unreported models are observed under various conditions. The present study gives a unique understanding of the intermolecular interactions in UPy-based supramolecular polymers and also provides a simple tuning method, which benefits the construction of functional materials and the adjustment of their properties.

2.
Inorg Chem ; 61(50): 20587-20595, 2022 Dec 19.
Article En | MEDLINE | ID: mdl-36459491

For fabricating a hydrogen-bonded framework with a stabilized hybrid structure for versatile functional properties, an inorganic polyanionic cluster that bears covalently grafted organic groups for hydrogen bond connection is synthesized. By modifying two guanine groups into a disklike polyoxometalate [Mn(OH)6Mo6O18]3- on both sides symmetrically, a polyanionic hybrid building block is obtained. With the cluster serving as a bridge and the grafted guanine unit serving as the binding sites, a polyoxometalate built-in hydrogen-bonded framework in the form of a square lattice shape within a two-dimensional plane has been fabricated as a single-layer assembly. In a further step, the counterion connection and hydrophilic/hydrophobic effect are used to drive the growth of layered framework assembly along the perpendicular direction. The resulting cluster-embedded framework possesses permanent porosity and inner-layer ionic characteristics after activation, which allows the framework to exhibit both high charge-/size-selective adsorption of organic cations and pH-controlled catalytic oxidation of methionine via the charged property.


Guanine , Hydrogen , Hydrogen Bonding , Adsorption , Hydrogen-Ion Concentration
3.
ACS Appl Mater Interfaces ; 14(4): 5194-5202, 2022 Feb 02.
Article En | MEDLINE | ID: mdl-35067040

Enhanced conversion of carbon dioxide (CO2) for cycloaddition with epoxide derivatives is highly desired in organic synthesis and green chemistry, yet it is still a challenge to obtain satisfactory activity under mild reaction conditions of temperature and pressure. For this purpose, an unexploited strategy is proposed here by incorporating near-infrared (NIR) photothermal properties into multicomponent catalysts. Through the electrostatic adsorption of Co- or Ce-substituted polyoxometalate (POM) clusters on the surface of graphene oxide (GO) with covalently grafted polyethyleneimine (PEI), a series of composite catalysts POMs@GO-PEI are prepared. The structural and property characterizations demonstrate the synergistic advantages of the catalysts bearing Lewis acids and bases and local NIR photothermal heating from the GO matrix for dramatically enhanced CO2 cycloaddition. Noticeably, while the turnover frequency increases up to 2718 h-1, the heterogeneous catalysts exhibit photothermal stability and recyclability. With this method, the onsite NIR photothermal transformation becomes extendable to more green reaction processes.

4.
Soft Matter ; 15(25): 5034-5041, 2019 Jun 26.
Article En | MEDLINE | ID: mdl-31173039

A series of bola-form surfactants with two identical azobenzene ends separated by a flexible chain but different cationic heads were synthesized. These amphiphilic molecules exhibited rich self-assembly properties in aqueous solutions. The physical characterizations demonstrated that the cationic heads showed a decisive influence on both the gelation behavior and the gel strength. The surfactant with a trimethylammonium head group did not form a hydrogel even at a higher concentration, yet it promoted the gelation of pyridinium and methylimidazolium head bearing surfactants, which formed hydrogels but could not boost each other's gelation capability. Besides the heating induced reversible gel-sol transition, the UV light irradiation also triggered the change of gel to sol while the irradiation with visible light led to a reverse process. Through the addition of cyclodextrins, the hydrogels transformed into sols, while the sols reverted to gels accompanied by the addition of competitive guest molecules. The surfactant hydrogels displayed a stimulus-response to both anionic and cationic additives based on different mechanisms, and reverse order of addition of the external guest molecules and host cyclodextrins also resulted in the modulation of the gel-sol transition. By the combination of photo- and chemical-stimuli, multiple responses on the transformations between the gel and sol were realized.

5.
Dalton Trans ; 48(16): 5168-5175, 2019 Apr 16.
Article En | MEDLINE | ID: mdl-30806387

Herein, a mono-lacunary Keggin-type polyoxometalate (POM), [SiW11O39]8-, grafted with an azobenzene group through Sn ion bridging was prepared, and the formed organic-inorganic hybrid cluster was characterized via elemental analysis, NMR, TGA, and IR techniques. A vesicular structure of the hybrid cluster assembly in aqueous media was observed in the TEM image, and it dissociated in the presence of α-/ß-, γ-cyclodextrins (α-/ß-, γ-CDs); this dissociation was driven by the host-guest interactions. The monodispersed inclusion complex further reassembled into smaller micelles under irradiation with 365 nm light, and this transformation was reversibly controlled by alternating the irradiation with 450 nm light. Moreover, in the case of the POM-Azo/ß-CD system, reassembly from the monodispersed state to the vesicular state was achieved by the addition of a competitive guest molecule. Thus, the reversible host-guest interactions combining reversible photoisomerization of the azobenzene group provided multiple ways to modulate the assembly and disassembly of the POM hybrid as well as the changes between different assemblies. The present study inspires the potential use of these kind of hybrid POMs in enhanced catalytic reactions and recycling.

6.
Inorg Chem ; 57(7): 3731-3741, 2018 Apr 02.
Article En | MEDLINE | ID: mdl-29553263

A series of triol ligand [CH3C(CH2OH)3] covalently decorated polyoxometalates (POMs), which could be ascribed to the primary complexes with structural formulas {M2[Mo2O4(CH3C(CH2O)3)2]3}2- (M = Cu2+, Co2+, Ni2+, Zn2+), have been synthesized in organic solvents. Single-crystal X-ray structural analysis reveals that the synthesized polyanionic clusters are comprised of three {Mo2} units and two divalent transition-metal ions connecting to each other in an alternating style, where all {Mo2} blocks were covalently decorated by two triol ligands in the trans conformation. The 1/3 molar ratio of M/Mo in the prepared complexes was higher than those ratios in typical Anderson-Evans, Wells-Dawson, and Keggin POMs. With a decrease in the M/Mo molar ratio of a Mo-contained reactant to 1/6 and/or the addition of acetic acid to the reaction solution, the primary complexes acting as precursors transformed continuously into the corresponding triol-ligand-decorated Anderson-Evans POMs. Detailed investigations were conducted by using different isopolymolybdates in various solvent environments, and several Anderson-Evans POMs in different triol-ligand-decorated fashions were obtained from the primary complexes. In addition, we also realized the transformation between the Anderson-Evans clusters in different decoration fashions by simply controlling the acidity in solution. Magnetic measurement showed a general property, but the catalytic experiments demonstrated that CoII- and Zn II-containing POMs displayed a higher efficiency for the selective oxidation of thioanisole to sulfoxide.

7.
Chemistry ; 23(54): 13510-13517, 2017 Sep 27.
Article En | MEDLINE | ID: mdl-28691775

A series of cationic peptides with alternating hydrophilic and hydrophobic residues were elaborately designed and synthesized. These kinds of short peptides with protonated lysine groups can interact with anionic polyoxometalate nanoclusters through multivalent ionic bonds and hydrogen bonds, resulting in the formation of helical polyoxometalate arrays in aqueous solution. Fourier transform infrared (FTIR) spectroscopy, circular dichroism (CD), transmission electron microscopy (TEM), and dynamic light scattering (DLS) were utilized to characterize the self-assembled structures. TEM revealed that the polyoxometalate clusters form periodic arrays within the helical nanofibers. This work reports that the handedness of the helical fibers was attributed to the precise chirality expression of peptides. The l-type peptide directed the formation of left-handed polyoxometalate arrays, whereas right-handed polyoxometalate arrays were observed when the peptide was constituted by d-amino acids. It was also found that the pitch of the helical nanofibers is inversely proportional to the hydrophobicity of peptides with less hydrophobicity giving a larger helical pitch.


Peptides/chemistry , Tungsten Compounds/chemistry , Circular Dichroism , Dynamic Light Scattering , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Transmission , Nanofibers/chemistry , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared
8.
Nanoscale Res Lett ; 12(1): 401, 2017 Dec.
Article En | MEDLINE | ID: mdl-28610394

Selenium is an important element for human's health, small size is very helpful for Se nanoparticles to be absorbed by human's body. Here, we present a facile approach to fabrication of small selenium nanoparticles (Nano-Se) as well as nanorods by dissolving sodium selenite (Na2SeO3) in glycerin and using glucose as the reduction agent. The as-prepared selenium nanoparticles have been characterized by X-ray diffraction (XRD), UV-Vis absorption spectroscopy and high resolution transmission electron microscope (HRTEM). The morphology of small Se nanoparticles and nanorods have been demonstrated in the TEM images. A small amount of 3-mercaptoproprionic acid (MPA) and glycerin play a key role on controlling the particle size and stabilize the dispersion of Nano-Se in the glycerin solution. In this way, we obtained very small and uniform Se nanoparticles; whose size ranges from 2 to 6 nm. This dimension is much smaller than the best value (>20 nm) ever reported in the literatures. Strong quantum confinement effect has been observed upon the size-dependent optical spectrum of these Se nanoparticles.

9.
Dalton Trans ; 45(41): 16139-16143, 2016 Oct 18.
Article En | MEDLINE | ID: mdl-27711683

We show that chirality transfer from chiral polyoxometalates to achiral polyoxometalates can occur in aqueous solution with unexpected selectivity of surrounding counterions. In comparison with sodium ions, protonated dimethylammonium counterions play a critical role in shortening the inter-cluster distance, thus promoting the efficiency of chirality transfer.

10.
PLoS One ; 8(10): e77253, 2013.
Article En | MEDLINE | ID: mdl-24204781

Herein we present an unusual phosphine-free method to fabricate water soluble CdSeS nanocrystals in cubic structure. In this method, glycerin was used as a stabilizing agent replacing tri-n-octylphosphine oxide (TOPO). Water solution of Na2SeO3 in polyethylene glycol was utilized as Se source. 3-Mercaptopropionic acid (MPA) provides S source. The phosphine-free Se and S sources were found to be highly reactive and suitable for the synthesis of CdSeS nanocrystals. XRD and HRTEM images confirm the formation of CdSeS nanocrystals in zinc blende structure. The absorption peaks on UV-vis spectra of as-prepared CdSeS nanocrystals are tunable from 330 nm to 440 nm, which blue shifts to shorter wavelength side in comparison with that of pure CdSe nanocrystals. The cubic CdSeS nanocrystals demonstrate narrow PL emissions spectra between 464 and 615 nm. Transmission electron microscopy images show the uniformity for the size distribution of the ternary QDs. Series water soluble CdSe(1-x)S(x) (x = 0:1) nanocrystals have also been synthesized using Na2SeO3 and Na2S solution as the Se-S co-sources. Tunable band gap energies of CdSe(1-x)S(x) (x = 0:1) nanocrystals upon chemical composition x have been achieved, the gap ranges from 290 nm to 558 nm.


Cadmium Compounds/chemistry , Glycerol/chemistry , Nanoparticles/chemistry , Selenium Compounds/chemistry , Sulfides/chemistry , 3-Mercaptopropionic Acid/chemistry , Luminescent Measurements , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Polyethylene Glycols/chemistry , Sodium Selenite/chemistry , Water/chemistry , X-Ray Diffraction
...