Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Genet Med ; 21(10): 2275-2284, 2019 10.
Article in English | MEDLINE | ID: mdl-30948856

ABSTRACT

PURPOSE: Sex-biased expression of genes on the X chromosome is accomplished by a complex mechanism of dosage regulation that leads to anatomical and physiological differences between males and females. Copy-number variations (CNVs) may impact the human genome by either affecting gene dosage or disturbing a chromosome structural and/or functional integrity. METHODS: We performed a high-resolution CNV profiling to investigate the X chromosome integrity in cohorts of 269 fertile females and 111 women affected with primary ovarian insufficiency (POI) and assessed CNVs impact into functional and nonfunctional genomic elements. RESULTS: In POI patients, we observed a 2.5-fold enrichment for rare CNVs comprising ovary-expressed genes, and genes implicated in autoimmune response and apoptotic signaling. Moreover, there was a higher prevalence of deletions encompassing genes that escape X inactivation, noncoding RNAs, and intergenic DNA sequences among POI females, highlighting structural differences between X chromosomes of fertile and POI females. Furthermore, we discovered a ~4% carrier incidence for X-linked disorders among fertile women. CONCLUSION: We constructed a high-resolution map of female-specific CNVs that provides critical insights into the spectrum of human genetic variation, sex-specific disease risk factors, and reproductive potential. We discovered novel CNVs associated with ovarian dysfunction and support polygenic models for POI.


Subject(s)
Chromosomes, Human, X/genetics , DNA Copy Number Variations/genetics , Primary Ovarian Insufficiency/genetics , Adult , Chromosome Mapping/methods , Comparative Genomic Hybridization , Female , Gene Dosage/genetics , Genome, Human , Genomics/methods , Humans , Ovary/metabolism
2.
J Assist Reprod Genet ; 36(1): 39-45, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30406445

ABSTRACT

PURPOSE: To investigate the potential genetic etiology of premature ovarian insufficiency (POI). METHODS: Whole-exome sequencing (WES) was done on DNA samples from women diagnosed with POI. Mutations identified were analyzed by in silico tools and were annotated according to the guidelines of the American College of Medical Genetics and Genomics. Plausible variants were confirmed by Sanger sequencing. RESULTS: Four of the 33 individuals (12%) carried pathogenic or likely pathogenic variants, and 6 individuals carried variants of unknown significance. The genes identified with pathogenic or likely pathogenic variants included PMM2, MCM9, and PSMC3IP. CONCLUSIONS: WES is an efficient tool for identifying gene variants in POI women; however, interpretation of variants is hampered by few exome studies involving ovarian disorders and the need for trio sequencing to determine inheritance and to detect de novo variants.


Subject(s)
Exome Sequencing/methods , Exome , Genetic Variation , Minichromosome Maintenance Proteins/genetics , Nuclear Proteins/genetics , Phosphotransferases (Phosphomutases)/genetics , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/pathology , Trans-Activators/genetics , Adult , Female , Humans
3.
Sci Rep ; 8(1): 16280, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30389958

ABSTRACT

We performed whole exome sequencing to identify an unknown genetic cause of azoospermia and male infertility in a large Pakistani family. Three infertile males were subjected to semen analysis, hormone testing, testicular histology, ultrasonography, karyotyping, Y-chromosome microdeletion and CFTR testing. The clinical testing suggested a diagnosis of obstructive azoospermia (OA). To identify the cause, we performed whole exome sequencing (WES) for 2 infertile brothers and 2 fertile family members. For segregation analysis and variant confirmation, we performed Sanger sequencing. WES data analysis of the family revealed segregated variants in 3 candidate genes. We considered novel nonsense variant c.2440C > T(p.Arg814*) in X-linked gene ADGRG2 as biologically most plausible. It is predicted to truncate the protein by 204 amino acids (aa) at a key transmembrane domain. Adgrg2-knockout male mice show sperm loss due to obstructive fluid stasis, while ADGRG2 mutations cause OA in the infertile male patients. Our analysis of testicular histology reveals secondary severe reduction of spermatogenesis, consistent with human and knockout mouse phenotypes. The ADGRG2 nonsense mutation is absent in the largest population databases, ExAC and gnomAD. Analysis of the novel nonsense mutation in extended family members confirmed co-segregation of the mutation with OA in all affected males. The likely pathogenic nature of the mutation is supported by its truncation effect on the transmembrane domain and distinctive ultrasound results. The study demonstrates effectiveness of WES in discovering a genetic cause of azoospermia.


Subject(s)
Ataxin-7/genetics , Azoospermia/genetics , Genes, X-Linked/genetics , Receptors, G-Protein-Coupled/genetics , Adult , Animals , Azoospermia/diagnosis , Azoospermia/pathology , Codon, Nonsense , DNA Mutational Analysis , Disease Models, Animal , Humans , Male , Mice , Mice, Knockout , Pakistan , Semen Analysis , Testis/pathology , Exome Sequencing
4.
Hum Genet ; 137(2): 175-181, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29392406

ABSTRACT

Whole exome sequencing (WES) is an emerging technique in prenatal diagnosis. In this retrospective study, we examined diagnostic utility and limitations of WES in prenatal cases with structural birth defects. DNA from 20 trios (fetal and parental), with normal karyotype and microarray findings, underwent WES and variant interpretation at a reference laboratory. The WES results were later re-evaluated in our academic center utilizing prenatal and postnatal phenotyping. Initial analysis using only prenatal ultrasound findings revealed no pathogenic or likely pathogenic variants in 20 pregnancies with structural birth defects. Re-analysis of WES variants and combination of prenatal and postnatal phenotyping yielded pathogenic variants in at least 20% of cases including PORCN gene in a fetus with split-hand/foot malformation, as well as variants of uncertain significance in NEB and NOTCH1 in fetuses with postnatal muscle weakness and Adams-Oliver syndrome, respectively. Furthermore, Sanger sequencing in a patient with holoprosencephaly, elucidated by postnatal MRI, revealed a pathogenic 47-base pairs deletion in ZIC2 which was missed by prenatal WES. This study suggests that incomplete prenatal phenotyping and lack of prenatal ultrasound-genotype databases are the limiting factors for current interpretation of WES data in prenatal diagnosis. Development of prenatal phenotype-genotype databases would significantly help WES interpretation in this setting. Patients who underwent prenatal clinical WES may benefit from the re-analysis based on detailed postnatal findings.


Subject(s)
Congenital Abnormalities/genetics , Exome Sequencing/trends , Prenatal Diagnosis , Congenital Abnormalities/diagnosis , Congenital Abnormalities/pathology , Databases, Factual , Exome/genetics , Female , Fetus , Genotype , Humans , Male , Pregnancy , Retrospective Studies
5.
Mol Genet Genomic Med ; 6(2): 276-281, 2018 03.
Article in English | MEDLINE | ID: mdl-29363275

ABSTRACT

BACKGROUND: Hypergonadotropic hypogonadism (HH) is a genetically heterogeneous disorder that usually presents with amenorrhea, atrophic ovaries, and low estrogen. Most cases of HH are idiopathic and nonsyndromic. Nucleoporin 107 (NUP107), a protein involved in transport between cytoplasm and nucleus with putative roles in meiosis/mitosis progression, was recently implicated as a cause of HH. We identified a NUP107 genetic variant in a nonconsanguineous family with two sisters affected with primary amenorrhea and HH, and generated a mouse model that carried the human variant. METHODS: We performed a high-resolution X-chromosome microarray and whole exome sequencing on parents and two sisters with HH to identify pathogenic variants. We generated a mouse model of candidate NUP107 variant using CRISPR/Cas9. RESULTS: Whole exome sequencing identified a novel and rare missense variant in the NUP107 gene (c.1063C>T, p.R355C) in both sisters with HH. In order to determine functional significance of this variant, we used CRISPR/Cas9 to introduce the human variant into the mouse genome. Mice with the homolog of the R355C variant, as well as the nine base pairs deletion in Nup107 had female subfertility. CONCLUSIONS: Our findings indicate that NUP107 R355C variant falls in the category of variant of unknown significance as the cause of HH and infertility.


Subject(s)
Mutation, Missense , Nuclear Pore Complex Proteins/genetics , Primary Ovarian Insufficiency/genetics , Adult , Amenorrhea/genetics , Animals , Base Sequence , Consanguinity , Disease Models, Animal , Female , Humans , Hypogonadism/genetics , Male , Menopause, Premature/genetics , Mice , Nuclear Pore Complex Proteins/metabolism , Pedigree , Polymorphism, Single Nucleotide , Exome Sequencing
6.
J Clin Endocrinol Metab ; 102(2): 576-582, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27802094

ABSTRACT

Objective: To assess the frequency of variants, including biallelic pathogenic variants, in minichromosome maintenance 8 (MCM8) and minichromosome maintenance 9 (MCM9), other genes related to MCM8-MCM9, and DNA damage repair (DDR) pathway in participants with primary ovarian insufficiency (POI). Design: MCM8, MCM9, and genes encoding DDR proteins that have been implicated in reproductive aging were sequenced among POI participants. Setting: Academic research institution. Participants: All were diagnosed with POI prior to age 40 years and presented with elevated follicle-stimulating hormone levels. Interventions: None. Main Outcome Measures: We identified nucleotide variants in MCM8, MCM9, and genes thought to be involved in the DNA damage response pathway and/or implicated in reproductive aging. Results: MCM8 was sequenced in 155 POI participants, whereas MCM9 was sequenced in 151 participants. Three of 155 (2%) participants carried possibly damaging heterozygous variants in MCM8, whereas 7 of 151 (5%) individuals carried possibly damaging heterozygous variants in MCM9. One participant carried a novel homozygous variant, c.1651C>T, p.Gln551*, in MCM9, which is predicted to introduce a premature stop codon in exon 9. Biallelic damaging heterozygous variants in both MCM8 and MCM9 were identified in 1 participant. Of a total of 10 participants carrying damaging heterozygous variants in either MCM8 or MCM9, 2 individuals carried heterozygous damaging variants in genes associated with either MCM8 or MCM9 or the DDR pathway. Conclusions: We identified a significant number of potentially damaging and novel variants in MCM8 and MCM9 among participants with POI and examined multiallelic association with variants in DDR and MCM8-MCM9 interactome genes.


Subject(s)
Aging/genetics , DNA Damage/genetics , DNA Repair/genetics , Minichromosome Maintenance Proteins/genetics , Primary Ovarian Insufficiency/genetics , Adult , Female , Humans , Sequence Analysis, DNA
7.
Curr Biol ; 25(12): 1661-5, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26051890

ABSTRACT

Cooperative systems are susceptible to invasion by selfish individuals that profit from receiving the social benefits but fail to contribute. These so-called "cheaters" can have a fitness advantage in the laboratory, but it is unclear whether cheating provides an important selective advantage in nature. We used a population genomic approach to examine the history of genes involved in cheating behaviors in the social amoeba Dictyostelium discoideum, testing whether these genes experience rapid evolutionary change as a result of conflict over spore-stalk fate. Candidate genes and surrounding regions showed elevated polymorphism, unusual patterns of linkage disequilibrium, and lower levels of population differentiation, but they did not show greater between-species divergence. The signatures were most consistent with frequency-dependent selection acting to maintain multiple alleles, suggesting that conflict may lead to stalemate rather than an escalating arms race. Our results reveal the evolutionary dynamics of cooperation and cheating and underscore how sequence-based approaches can be used to elucidate the history of conflicts that are difficult to observe directly.


Subject(s)
Dictyostelium/genetics , Genome, Protozoan , Evolution, Molecular , Genomics , Polymorphism, Genetic , Selection, Genetic
8.
J Clin Invest ; 125(1): 258-62, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25437880

ABSTRACT

Premature ovarian failure (POF) is a genetically and phenotypically heterogeneous disorder that includes individuals with manifestations ranging from primary amenorrhea to loss of menstrual function prior to age 40. POF presents as hypergonadotropic hypogonadism and can be part of a syndrome or occur in isolation. Here, we studied 3 sisters with primary amenorrhea, hypothyroidism, and hypergonadotropic hypogonadism. The sisters were born to parents who are first cousins. SNP analysis and whole-exome sequencing revealed the presence of a pathogenic variant of the minichromosome maintenance 8 gene (MCM8, c.446C>G; p.P149R) located within a region of homozygosity that was present in the affected daughters but not in their unaffected sisters. Because MCM8 participates in homologous recombination and dsDNA break repair, we tested fibroblasts from the affected sisters for hypersensitivity to chromosomal breaks. Compared with fibroblasts from unaffected daughters, chromosomal break repair was deficient in fibroblasts from the affected individuals, likely due to inhibited recruitment of MCM8 p.P149R to sites of DNA damage. Our study identifies an autosomal recessive disorder caused by an MCM8 mutation that manifests with endocrine dysfunction and genomic instability.


Subject(s)
Chromosomal Instability , Exome , Minichromosome Maintenance Proteins/genetics , Primary Ovarian Insufficiency/genetics , Consanguinity , DNA Repair , Female , Genetic Association Studies , Genetic Predisposition to Disease , HEK293 Cells , Humans , Lod Score , Middle Aged , Pedigree , Polymorphism, Single Nucleotide , Protein Binding
9.
Am J Hum Genet ; 95(6): 754-62, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25480036

ABSTRACT

Premature ovarian failure (POF) is genetically heterogeneous and manifests as hypergonadotropic hypogonadism either as part of a syndrome or in isolation. We studied two unrelated consanguineous families with daughters exhibiting primary amenorrhea, short stature, and a 46,XX karyotype. A combination of SNP arrays, comparative genomic hybridization arrays, and whole-exome sequencing analyses identified homozygous pathogenic variants in MCM9, a gene implicated in homologous recombination and repair of double-stranded DNA breaks. In one family, the MCM9 c.1732+2T>C variant alters a splice donor site, resulting in abnormal alternative splicing and truncated forms of MCM9 that are unable to be recruited to sites of DNA damage. In the second family, MCM9 c.394C>T (p.Arg132(∗)) results in a predicted loss of functional MCM9. Repair of chromosome breaks was impaired in lymphocytes from affected, but not unaffected, females in both families, consistent with MCM9 function in homologous recombination. Autosomal-recessive variants in MCM9 cause a genomic-instability syndrome associated with hypergonadotropic hypogonadism and short stature. Preferential sensitivity of germline meiosis to MCM9 functional deficiency and compromised DNA repair in the somatic component most likely account for the ovarian failure and short stature.


Subject(s)
Amenorrhea/genetics , Chromosomal Instability/genetics , Dwarfism/genetics , Minichromosome Maintenance Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Primary Ovarian Insufficiency/genetics , Abnormal Karyotype , Adolescent , Adult , Base Sequence , Cell Line , Consanguinity , DNA Breaks, Double-Stranded , DNA Repair , Exome/genetics , Female , Homologous Recombination , Homozygote , Humans , Middle Aged , Molecular Sequence Data , Mutation , Pedigree , RNA Splice Sites , Sequence Analysis, DNA , Young Adult
10.
PLoS Biol ; 12(11): e1002005, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25423365

ABSTRACT

Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.


Subject(s)
Arthropods/genetics , Genome , Synteny , Animals , Circadian Rhythm Signaling Peptides and Proteins/genetics , DNA Methylation , Evolution, Molecular , Female , Genome, Mitochondrial , Hormones/genetics , Male , Multigene Family , Phylogeny , Polymorphism, Genetic , Protein Kinases/genetics , RNA, Untranslated/genetics , Receptors, Odorant/genetics , Selenoproteins/genetics , Sex Chromosomes , Transcription Factors/genetics
11.
Genome Res ; 24(7): 1209-23, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24985915

ABSTRACT

Accurate gene model annotation of reference genomes is critical for making them useful. The modENCODE project has improved the D. melanogaster genome annotation by using deep and diverse high-throughput data. Since transcriptional activity that has been evolutionarily conserved is likely to have an advantageous function, we have performed large-scale interspecific comparisons to increase confidence in predicted annotations. To support comparative genomics, we filled in divergence gaps in the Drosophila phylogeny by generating draft genomes for eight new species. For comparative transcriptome analysis, we generated mRNA expression profiles on 81 samples from multiple tissues and developmental stages of 15 Drosophila species, and we performed cap analysis of gene expression in D. melanogaster and D. pseudoobscura. We also describe conservation of four distinct core promoter structures composed of combinations of elements at three positions. Overall, each type of genomic feature shows a characteristic divergence rate relative to neutral models, highlighting the value of multispecies alignment in annotating a target genome that should prove useful in the annotation of other high priority genomes, especially human and other mammalian genomes that are rich in noncoding sequences. We report that the vast majority of elements in the annotation are evolutionarily conserved, indicating that the annotation will be an important springboard for functional genetic testing by the Drosophila community.


Subject(s)
Computational Biology/methods , Drosophila melanogaster/genetics , Gene Expression Profiling , Molecular Sequence Annotation , Transcriptome , Animals , Cluster Analysis , Drosophila melanogaster/classification , Evolution, Molecular , Exons , Female , Genome, Insect , Humans , Male , Nucleotide Motifs , Phylogeny , Position-Specific Scoring Matrices , Promoter Regions, Genetic , RNA Editing , RNA Splice Sites , RNA Splicing , Reproducibility of Results , Transcription Initiation Site
12.
BMC Genomics ; 15: 86, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24479613

ABSTRACT

BACKGROUND: The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes. RESULTS: Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data. CONCLUSIONS: Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.


Subject(s)
Bees/genetics , Genes, Insect , Animals , Base Composition , Databases, Genetic , Interspersed Repetitive Sequences/genetics , Molecular Sequence Annotation , Open Reading Frames/genetics , Peptides/analysis , Sequence Analysis, RNA , Sequence Homology, Amino Acid
13.
Gigascience ; 2(1): 10, 2013 Jul 22.
Article in English | MEDLINE | ID: mdl-23870653

ABSTRACT

BACKGROUND: The process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly. RESULTS: In Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies. CONCLUSIONS: Many current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.

14.
BMC Genomics ; 10: 180, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19393050

ABSTRACT

BACKGROUND: We present here the assembly of the bovine genome. The assembly method combines the BAC plus WGS local assembly used for the rat and sea urchin with the whole genome shotgun (WGS) only assembly used for many other animal genomes including the rhesus macaque. RESULTS: The assembly process consisted of multiple phases: First, BACs were assembled with BAC generated sequence, then subsequently in combination with the individual overlapping WGS reads. Different assembly parameters were tested to separately optimize the performance for each BAC assembly of the BAC and WGS reads. In parallel, a second assembly was produced using only the WGS sequences and a global whole genome assembly method. The two assemblies were combined to create a more complete genome representation that retained the high quality BAC-based local assembly information, but with gaps between BACs filled in with the WGS-only assembly. Finally, the entire assembly was placed on chromosomes using the available map information.Over 90% of the assembly is now placed on chromosomes. The estimated genome size is 2.87 Gb which represents a high degree of completeness, with 95% of the available EST sequences found in assembled contigs. The quality of the assembly was evaluated by comparison to 73 finished BACs, where the draft assembly covers between 92.5 and 100% (average 98.5%) of the finished BACs. The assembly contigs and scaffolds align linearly to the finished BACs, suggesting that misassemblies are rare. Genotyping and genetic mapping of 17,482 SNPs revealed that more than 99.2% were correctly positioned within the Btau_4.0 assembly, confirming the accuracy of the assembly. CONCLUSION: The biological analysis of this bovine genome assembly is being published, and the sequence data is available to support future bovine research.


Subject(s)
Cattle/genetics , Genome , Genomics/methods , Animals , Chromosome Mapping , Chromosomes, Artificial, Bacterial , Genetic Markers , Sequence Analysis, DNA
15.
Genome Biol ; 9(7): R110, 2008.
Article in English | MEDLINE | ID: mdl-18611278

ABSTRACT

BACKGROUND: Enterococcus faecalis has emerged as a major hospital pathogen. To explore its diversity, we sequenced E. faecalis strain OG1RF, which is commonly used for molecular manipulation and virulence studies. RESULTS: The 2,739,625 base pair chromosome of OG1RF was found to contain approximately 232 kilobases unique to this strain compared to V583, the only publicly available sequenced strain. Almost no mobile genetic elements were found in OG1RF. The 64 areas of divergence were classified into three categories. First, OG1RF carries 39 unique regions, including 2 CRISPR loci and a new WxL locus. Second, we found nine replacements where a sequence specific to V583 was substituted by a sequence specific to OG1RF. For example, the iol operon of OG1RF replaces a possible prophage and the vanB transposon in V583. Finally, we found 16 regions that were present in V583 but missing from OG1RF, including the proposed pathogenicity island, several probable prophages, and the cpsCDEFGHIJK capsular polysaccharide operon. OG1RF was more rapidly but less frequently lethal than V583 in the mouse peritonitis model and considerably outcompeted V583 in a murine model of urinary tract infections. CONCLUSION: E. faecalis OG1RF carries a number of unique loci compared to V583, but the almost complete lack of mobile genetic elements demonstrates that this is not a defining feature of the species. Additionally, OG1RF's effects in experimental models suggest that mediators of virulence may be diverse between different E. faecalis strains and that virulence is not dependent on the presence of mobile genetic elements.


Subject(s)
Enterococcus faecalis/genetics , Genome, Bacterial , Animals , Anti-Bacterial Agents , Bacterial Proteins/genetics , Biofilms , DNA, Bacterial/chemistry , Drug Resistance, Bacterial , Enterococcus faecalis/drug effects , Enterococcus faecalis/pathogenicity , Fusidic Acid/pharmacology , Genetic Variation , Genomics , Interspersed Repetitive Sequences , Membrane Proteins/genetics , Mice , Operon , Repetitive Sequences, Nucleic Acid , Rifampin/pharmacology , Sequence Homology, Nucleic Acid
16.
BMC Microbiol ; 7: 99, 2007 Nov 06.
Article in English | MEDLINE | ID: mdl-17986343

ABSTRACT

BACKGROUND: Community acquired (CA) methicillin-resistant Staphylococcus aureus (MRSA) increasingly causes disease worldwide. USA300 has emerged as the predominant clone causing superficial and invasive infections in children and adults in the USA. Epidemiological studies suggest that USA300 is more virulent than other CA-MRSA. The genetic determinants that render virulence and dominance to USA300 remain unclear. RESULTS: We sequenced the genomes of two pediatric USA300 isolates: one CA-MRSA and one CA-methicillin susceptible (MSSA), isolated at Texas Children's Hospital in Houston. DNA sequencing was performed by Sanger dideoxy whole genome shotgun (WGS) and 454 Life Sciences pyrosequencing strategies. The sequence of the USA300 MRSA strain was rigorously annotated. In USA300-MRSA 2658 chromosomal open reading frames were predicted and 3.1 and 27 kilobase (kb) plasmids were identified. USA300-MSSA contained a 20 kb plasmid with some homology to the 27 kb plasmid found in USA300-MRSA. Two regions found in US300-MRSA were absent in USA300-MSSA. One of these carried the arginine deiminase operon that appears to have been acquired from S. epidermidis. The USA300 sequence was aligned with other sequenced S. aureus genomes and regions unique to USA300 MRSA were identified. CONCLUSION: USA300-MRSA is highly similar to other MRSA strains based on whole genome alignments and gene content, indicating that the differences in pathogenesis are due to subtle changes rather than to large-scale acquisition of virulence factor genes. The USA300 Houston isolate differs from another sequenced USA300 strain isolate, derived from a patient in San Francisco, in plasmid content and a number of sequence polymorphisms. Such differences will provide new insights into the evolution of pathogens.


Subject(s)
Staphylococcal Infections/epidemiology , Staphylococcus aureus/genetics , Adolescent , Anti-Bacterial Agents/pharmacology , Base Sequence , Genomic Islands/genetics , Humans , Hydrolases/genetics , Methicillin Resistance , Molecular Epidemiology , Molecular Sequence Data , Open Reading Frames/genetics , Plasmids/genetics , Polymorphism, Genetic , Staphylococcus aureus/drug effects , United States/epidemiology
17.
PLoS One ; 2(9): e928, 2007 Sep 26.
Article in English | MEDLINE | ID: mdl-17895969

ABSTRACT

BACKGROUND: Bacillus spores are notoriously resistant to unfavorable conditions such as UV radiation, gamma-radiation, H2O2, desiccation, chemical disinfection, or starvation. Bacillus pumilus SAFR-032 survives standard decontamination procedures of the Jet Propulsion Lab spacecraft assembly facility, and both spores and vegetative cells of this strain exhibit elevated resistance to UV radiation and H2O2 compared to other Bacillus species. PRINCIPAL FINDINGS: The genome of B. pumilus SAFR-032 was sequenced and annotated. Lists of genes relevant to DNA repair and the oxidative stress response were generated and compared to B. subtilis and B. licheniformis. Differences in conservation of genes, gene order, and protein sequences are highlighted because they potentially explain the extreme resistance phenotype of B. pumilus. The B. pumilus genome includes genes not found in B. subtilis or B. licheniformis and conserved genes with sequence divergence, but paradoxically lacks several genes that function in UV or H2O2 resistance in other Bacillus species. SIGNIFICANCE: This study identifies several candidate genes for further research into UV and H2O2 resistance. These findings will help explain the resistance of B. pumilus and are applicable to understanding sterilization survival strategies of microbes.


Subject(s)
Bacillus/genetics , DNA Repair , Drug Resistance, Bacterial/genetics , Hydrogen Peroxide/pharmacology , Bacillus/drug effects , Bacillus/radiation effects , Gamma Rays , Genes, Bacterial , Genome, Bacterial , Oxidative Stress , Sequence Analysis, DNA , Spores, Bacterial/drug effects , Spores, Bacterial/genetics , Spores, Bacterial/radiation effects , Ultraviolet Rays
18.
PLoS One ; 2(7): e659, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17668047

ABSTRACT

Fusobacterium nucleatum is a prominent member of the oral microbiota and is a common cause of human infection. F. nucleatum includes five subspecies: polymorphum, nucleatum, vincentii, fusiforme, and animalis. F. nucleatum subsp. polymorphum ATCC 10953 has been well characterized phenotypically and, in contrast to previously sequenced strains, is amenable to gene transfer. We sequenced and annotated the 2,429,698 bp genome of F. nucleatum subsp. polymorphum ATCC 10953. Plasmid pFN3 from the strain was also sequenced and analyzed. When compared to the other two available fusobacterial genomes (F. nucleatum subsp. nucleatum, and F. nucleatum subsp. vincentii) 627 open reading frames unique to F. nucleatum subsp. polymorphum ATCC 10953 were identified. A large percentage of these mapped within one of 28 regions or islands containing five or more genes. Seventeen percent of the clustered proteins that demonstrated similarity were most similar to proteins from the clostridia, with others being most similar to proteins from other gram-positive organisms such as Bacillus and Streptococcus. A ten kilobase region homologous to the Salmonella typhimurium propanediol utilization locus was identified, as was a prophage and integrated conjugal plasmid. The genome contains five composite ribozyme/transposons, similar to the CdISt IStrons described in Clostridium difficile. IStrons are not present in the other fusobacterial genomes. These findings indicate that F. nucleatum subsp. polymorphum is proficient at horizontal gene transfer and that exchange with the Firmicutes, particularly the Clostridia, is common.


Subject(s)
Fusobacterium nucleatum/genetics , Genome, Bacterial , Polymorphism, Genetic , Amino Acids/metabolism , Base Sequence , Clostridium/genetics , DNA, Bacterial/genetics , Evolution, Molecular , Fusobacterium nucleatum/classification , Fusobacterium nucleatum/metabolism , Gene Transfer Techniques , Humans , Infections/microbiology , Introns , Multigene Family , Open Reading Frames , Peptides/chemistry , Peptides/genetics , Plasmids/genetics , Repetitive Sequences, Nucleic Acid
19.
Genome Res ; 17(6): 760-74, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17567995

ABSTRACT

A key component of the ongoing ENCODE project involves rigorous comparative sequence analyses for the initially targeted 1% of the human genome. Here, we present orthologous sequence generation, alignment, and evolutionary constraint analyses of 23 mammalian species for all ENCODE targets. Alignments were generated using four different methods; comparisons of these methods reveal large-scale consistency but substantial differences in terms of small genomic rearrangements, sensitivity (sequence coverage), and specificity (alignment accuracy). We describe the quantitative and qualitative trade-offs concomitant with alignment method choice and the levels of technical error that need to be accounted for in applications that require multisequence alignments. Using the generated alignments, we identified constrained regions using three different methods. While the different constraint-detecting methods are in general agreement, there are important discrepancies relating to both the underlying alignments and the specific algorithms. However, by integrating the results across the alignments and constraint-detecting methods, we produced constraint annotations that were found to be robust based on multiple independent measures. Analyses of these annotations illustrate that most classes of experimentally annotated functional elements are enriched for constrained sequences; however, large portions of each class (with the exception of protein-coding sequences) do not overlap constrained regions. The latter elements might not be under primary sequence constraint, might not be constrained across all mammals, or might have expendable molecular functions. Conversely, 40% of the constrained sequences do not overlap any of the functional elements that have been experimentally identified. Together, these findings demonstrate and quantify how many genomic functional elements await basic molecular characterization.


Subject(s)
Evolution, Molecular , Genome, Human , Mammals/genetics , Open Reading Frames , Phylogeny , Sequence Alignment , Animals , Human Genome Project , Humans
20.
Genome Res ; 16(11): 1329-33, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17065605

ABSTRACT

Investigators at the Baylor College of Medicine Human Genome Sequencing Center (BCM-HGSC) and BeeBase organized a community-wide effort to manually annotate the honey bee (Apis mellifera) genome. Although various strategies for manual annotation have been used in the past, the value of dispersed community annotation has not yet been demonstrated. Here we make a case for the merit of dispersed community annotation. We present annotation procedures, standard protocols, and tools used for sequence analysis, data submission, and data management. We also report lessons learned from this dispersed community annotation effort for a metazoan genome.


Subject(s)
Genomics/methods , Animals , Bees/genetics , Databases, Genetic , Genome, Human , Genomics/statistics & numerical data , Humans , Models, Genetic , Molecular Sequence Data , Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...