Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biosens Bioelectron ; 90: 210-216, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-27898378

ABSTRACT

In this work, the metallic silver and non-metallic nitrogen co-doped reduced graphene oxide (Ag-N-RGO) was first synthesized by a simple and cost-effective strategy, and then a molecularly imprinted polymer (MIP) was formed in situ at the surface of the prepared composite via electropolymerization of o-phenylenediamine in the presence of salbutamol as the template molecule. The electrochemical characterizations demonstrate that the bifunctional graphene-based composite shows improved catalytic performance than that of pristine graphene doped with one-component or none. The MIP sensor based on Ag-N-RGO owns high porous surface structure, resulting in the increased current response and enhanced recognition capacity than that of non-imprinted sensor. The outstanding performance of the developed sensor derives from the combined advantages of Ag-N-RGO with effective catalytic property and MIP with excellent selectivity. Under the optimal conditions, the electrochemical response of the developed sensor is linearly proportional to the concentration of salbutamol in the range of 0.03-20.00µmolL-1 with a low detection limit of 7 nmol L-1. The designed sensor has exhibited the multiple advantages such as low cost, simple manufacture, convenient use, excellent selectivity and good reproducibility. Finally, the proposed method has been extended for the determinations of salbutamol in human urine and pork samples, and the satisfactory recoveries between 98.9-105.3% are achieved.


Subject(s)
Adrenergic beta-2 Receptor Agonists/analysis , Adrenergic beta-2 Receptor Agonists/urine , Albuterol/analysis , Albuterol/urine , Electrochemical Techniques/methods , Graphite/chemistry , Red Meat/analysis , Animals , Biosensing Techniques/methods , Catalysis , Humans , Limit of Detection , Molecular Imprinting/methods , Oxidation-Reduction , Oxides/chemistry , Polymers/chemistry , Silver/chemistry , Swine
2.
Int Forum Allergy Rhinol ; 4(6): 435-46, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24664528

ABSTRACT

BACKGROUND: Nasal airflow is essential for the functioning of the human nose. Given individual variation in nasal anatomy, there is yet no consensus what constitutes normal nasal airflow patterns. We attempt to obtain such information that is essential to differentiate disease-related conditions. METHODS: Computational fluid dynamics (CFD) simulated nasal airflow in 22 healthy subjects during resting breathing. Streamline patterns, airflow distributions, velocity profiles, pressure, wall stress, turbulence, and vortical flow characteristics under quasi-steady state were analyzed. Patency ratings, acoustically measured minimum cross-sectional area (MCA), and rhinomanometric nasal resistance (NR) were examined for potential correlations with morphological and airflow-related variables. RESULTS: Common features across subjects included: >50% total pressure drop reached near the inferior turbinate head; wall shear stress, NR, turbulence energy, and vorticity were lower in the turbinate than in the nasal valve region. However, location of the major flow path and coronal velocity distributions varied greatly across individuals. Surprisingly, on average, more flow passed through the middle than the inferior meatus and correlated with better patency ratings (r = -0.65, p < 0.01). This middle flow percentage combined with peak postvestibule nasal heat loss and MCA accounted for >70% of the variance in subjective patency ratings and predicted patency categories with 86% success. Nasal index correlated with forming of the anterior dorsal vortex. Expected for resting breathing, the functional impact for local and total turbulence, vorticity, and helicity was limited. As validation, rhinomanometric NR significantly correlated with CFD simulations (r = 0.53, p < 0.01). CONCLUSION: Significant variations of nasal airflow found among healthy subjects; Key features may have clinically relevant applications.


Subject(s)
Computational Biology/methods , Computer Simulation , Hydrodynamics , Nose/anatomy & histology , Adult , Diagnosis, Differential , Ethnicity , Female , Humans , Male , Respiration , Rhinomanometry , Tomography, X-Ray Computed , Young Adult
3.
Int Forum Allergy Rhinol ; 4(4): 298-308, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24449655

ABSTRACT

BACKGROUND: Besides sensorineural factors, conductive impediments likely contribute to olfactory losses in chronic rhinosinusitis (CRS) patients, yet no conclusive evidence exists. We aimed to examine possible conductive factors using computational fluid dynamics (CFD) models. METHODS: A total of 29 CRS patients were assessed via odorant detection thresholds (ODTs), rhinomanometry (nasal resistance [NR]), acoustic rhinometry (minimum-cross-sectional area [MCA]) and computed tomography (CT) staging. CFD simulations of nasal airflow and odorant absorption to olfactory region were carried out based on individual CTs. Biopsies of olfactory epithelium (OE) were collected, cryosectioned, stained, and scored for erosion. RESULTS: Significant correlations to ODTs were found for 3 variables: odor absorption in the olfactory region (r = -0.60, p < 0.01), MCA (r = -0.40, p < 0.05), and CT staging (r = 0.42, p < 0.05). However, significant findings were limited to ODTs of the highly soluble l-carvone. Multiple regression analysis revealed that these variables combined, with the addition of NR, can account for 65% of the total variance in ODTs. CT staging correlated significantly with OE erosion (r = 0.77, p < 0.01) and can replace the latter in the regression with comparable outcomes. Partial correlations suggest the contributions of both conductive and sensorineural variables are more prominent if adjusted for the effects of the other. Olfactory loss and inflammatory factors have strong bilateral involvement, whereas conductive factors are independent between sides. As validation, CFD-simulated NRs significantly correlated with rhinomanometrically assessed NRs (r = 0.60, p < 0.01). CONCLUSION: Both conductive and sensorineural mechanisms can contribute to olfactory losses in CRS. CFD modeling provides critical guidance in understanding the role of conductive impediments in olfactory dysfunction in CRS.


Subject(s)
Hydrodynamics , Models, Biological , Rhinitis/physiopathology , Sinusitis/physiopathology , Adult , Biopsy , Chronic Disease , Female , Humans , Male , Middle Aged , Odorants , Olfactory Mucosa/pathology , Rhinitis/pathology , Rhinomanometry , Sensory Thresholds , Sinusitis/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL