Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.504
1.
Cancer Cell Int ; 24(1): 193, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822362

BACKGROUND: LncRNA colorectal neoplasia differentially expressed (CRNDE) was found to be an important regulator in many cancers. This project focuses on the function of CRNDE on macrophage metabolic reprogramming and Hepatocellular carcinoma (HCC). METHOD: qRT-PCR and Immunofluorescence were used to analyze Arg-1, IL-10, CD163, CCL-18, CD206, and CRNDE expression in HCC tissues and macrophages. Western Blotting was used to analyze ERK and p-ERK expression. Edu assay, transwell assay and xenograft experiments were carried out to study cell viability, migrated and invasive capability. Immunohistochemical staining was used to evaluate Ki67 expression. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed for macrophages metabolites analysis. RESULTS: Arg-1, IL-10, CD163, CD206, and CRNDE were significantly up-regulated in HCC tissues, M2 macrophage and M0 macrophage with CRNDE overexpressed (OV-CRNDE-M0), which downregulated in M0 macrophage with CRNDE knockdown (sh-CRNDE-M0). The conditioned medium (CM) of M2 cells and OV-CRNDE-M0 cells promoted cell viability, invasion, and migration of HCC cells, the effect was reversed by sh-CRNDE-M0 cells CM. OV-CRNDE-M0 cells promoted tumor growth, Ki67 and CD206 expression in xenograft model. 61 metabolites were detected, of which 18 metabolites changed significantly in OV-CRNDE-M0 group compared to M0 group, with 9 upregulated and 9 downregulated. KEGG analysis showed the enrichment pathways were biosynthesis, glyoxylate and dicarboxylate metabolism. SMPDB analysis showed the enrichment pathways were hypoacetylaspartia, canavan disease, and aspartate metabolism. CONCLUSION: CRNDE regulated the metabolic reprogramming of M2 macrophage via ERK pathway, which thereby contributed to HCC proliferation, migration, and invasion.

2.
Phytomedicine ; 130: 155767, 2024 May 24.
Article En | MEDLINE | ID: mdl-38833789

BACKGROUND: Due to its high incidence and elevated mortality, hepatocellular carcinoma (HCC) has emerged as a formidable global healthcare challenge. The intricate interplay between gender-specific disparities in both incidence and clinical outcomes has prompted a progressive recognition of the substantial influence exerted by estrogen and its corresponding receptors (ERs) upon HCC pathogenesis. Estrogen replacement therapy (ERT) emerged for the treatment of HCC by administering exogenous estrogen. However, the powerful side effects of estrogen, including the promotion of breast cancer and infertility, hinder the further application of ERT. Identifying effective therapeutic targets for estrogen and screening bioactive ingredients without E2-like side effects is of great significance for optimizing HCC ERT. METHODS: In this study, we employed an integrative approach, harnessing data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, clinical paraffin sections, adenoviral constructs as well as in vivo studies, to unveil the association between estrogen, estrogen receptor α (ESR1) and HCC. Leveraging methodologies encompassing molecular dynamics simulation and cellular thermal shift assay (CETSA) were used to confirm whether ESR1 is a molecular target of DHT. Multiple in vitro and in vivo experiments were used to identify whether i) ESR1 is a crucial gene that promotes DNA double-strand breaks (DSBs) and proliferation inhibition in HCC, ii) Dihydrotanshinone I (DHT), a quinonoid monomeric constituent derived from Salvia miltiorrhiza (Dan shen) exerts anti-HCC effects by regulating ESR1 and subsequent DSBs, iii) DHT has the potential to replace E2. RESULTS: DHT could target ESR1 and upregulate its expression in a concentration-dependent manner. This, in turn, leads to the downregulation of breast cancer type 1 susceptibility protein (BRCA1), a pivotal protein involved in the homologous recombination repair (HRR) process. The consequence of this downregulation is manifested through the induction of DSBs in HCC, subsequently precipitating a cascade of downstream events, including apoptosis and cell cycle arrest. Of particular significance is the comparative assessment of DHT and isodose estradiol treatments, which underscores DHT's excellent HCC-suppressive efficacy without concomitant perturbation of endogenous sex hormone homeostasis. CONCLUSION: Our findings not only confirm ESR1 as a therapeutic target in HCC management but also underscores DHT's role in upregulating ESR1 expression, thereby impeding the proliferation and invasive tendencies of HCC. In addition, we preliminarily identified DHT has the potential to emerge as an agent in optimizing HCC ERT through the substitution of E2.

3.
Cancer Immunol Immunother ; 73(8): 147, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38833156

BACKGROUND: This study aimed to investigate the relationship between signal regulatory protein gamma (SIRPG) and tumor immune microenvironment phenotypes or T cell mediated-adaptive antitumor immunity, and its predictive value for response to PD-1 blockade in cancers. METHODS: Pan-cancer analysis of SIRPG expression and immune deconvolution was performed using transcriptomic data across 33 tumor types. Transcriptomic and clinical data from 157 patients with non-small-cell lung cancer (NSCLC) and melanoma received PD-1 blockade were analyzed. Expression characteristics of SIRPG were investigated using single-cell RNA sequencing (scRNA-seq) data of 103,599 cells. The effect of SIRPG expression was evaluated via SIRPG knockdown or overexpression in Jurkat T cells. RESULTS: The results showed that most cancers with high SIRPG expression had significantly higher abundance of T cells, B cells, NK cells, M1 macrophages and cytotoxic lymphocytes and increased expression level of immunomodulatory factors regulating immune cell recruitment, antigen presentation, T cell activation and cytotoxicity, but markedly lower abundance of neutrophils, M2 macrophages, and myeloid-derived suppressor cells. High SIRPG expression was associated with favorable response to PD-1 blockade in both NSCLC and melanoma. scRNA-seq data suggested SIRPG was mainly expressed in CD8+ exhausted T and CD4+ regulatory T cells, and positively associated with immune checkpoint expression including PDCD1 and CTLA4. In vitro test showed SIRPG expression in T cells could facilitate expression of PDCD1 and CTLA4. CONCLUSION: High SIRPG expression is associated with an inflamed immune phenotype in cancers and favorable response to PD-1 blockade, suggesting it would be a promising predictive biomarker for PD-1 blockade and novel immunotherapeutic target.


Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Biomarkers, Tumor/metabolism , Melanoma/immunology , Melanoma/metabolism , Melanoma/genetics
4.
Materials (Basel) ; 17(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38730889

With the wide application of graphene oxide nanoparticles (GONPs), a great amount of GONP waste is discarded and concentrated in landfills. It has been proven that GONPs have strong toxicity and could gather toxic substances due to their high adsorption capacity. GONPs will seriously pollute the surrounding environment if they leak through the geosynthetic clay liner (GCL) in landfills. To investigate various factors (temperature, ionic strength (IS) and humic acid (HA)) on the transport and retention of GONPs in the GCL, a self-designed apparatus was created and column tests were carried out. The experimental results show that GONPs could be transported through the GCL. The mobility and sorption ratio of GONPs in GCL decreased with an increase in temperature and IS, and increased with an increase in HA. The temperature had little effect on the deposition ratio of GONPs in the GCL. The deposition ratio of GONPs in the GCL increased with IS, and decreased with an increase in HA. The transport of GONPs in GCL, glass beads and quartz sand was compared, and the results show that the retention ability of the GCL is much better than other porous materials. The experimental results could provide significant references for the pollution treatment in landfills.

5.
Colloids Surf B Biointerfaces ; 239: 113963, 2024 May 16.
Article En | MEDLINE | ID: mdl-38759294

Among various biomimetic polymer materials, polydimethylsiloxane (PDMS) stands out as an ideal matrix for surface-enhanced Raman scattering (SERS) due to its unique intrinsic Raman signal and tenacity. In order to realize the precise detection of prostate-specific antigen (PSA), we proposed a sandwich-type SERS-active immunostructure composed of PDMS@silver nanoparticles (Ag NPs)@ZIF-67 biomimetic film as the immunosubstrate and gold nanorods (Au NRs) as immunoprobes. Due to the synergistic effect of electromagnetic enhancement facilitated by biomimetic surfaces and chemical enhancement achieved by ZIF-67, this structure enabled an ultrasensitive and selective detection of PSA across a broad range from 10-3 to 10-9 mg/mL. The achieved limit of detection was as low as 3.0 × 10-10 mg/mL. Particularly, the intrinsic Raman signal of PDMS matrix at 2905 cm-1 was employed as a potential internal standard (IS) in the detection, achieving a high coefficient of determination (R2) value of 0.996. This multifunctional SERS substrate-mediated immunoassay holds vast potential for early diagnosis of prostate cancer, offering promising prospects for clinical applications.

6.
Ageing Res Rev ; 98: 102320, 2024 May 06.
Article En | MEDLINE | ID: mdl-38719161

Aging is a gradual and irreversible natural process. With aging, the body experiences a functional decline, and the effects amplify the vulnerability to a range of age-related diseases, including neurodegenerative, cardiovascular, and metabolic diseases. Within the aging process, the morphology and function of mitochondria and the endoplasmic reticulum (ER) undergo alterations, particularly in the structure connecting these organelles known as mitochondria-associated membranes (MAMs). MAMs serve as vital intracellular signaling hubs, facilitating communication between the ER and mitochondria when regulating various cellular events, including calcium homeostasis, lipid metabolism, mitochondrial function, and apoptosis. The formation of MAMs is partly dependent on the interaction between the vesicle-associated membrane protein-associated protein-B (VAPB) and protein tyrosine phosphatase-interacting protein-51 (PTPIP51). Accumulating evidence has begun to elucidate the pivotal role of the VAPB-PTPIP51 tether in the initiation and progression of age-related diseases. In this study, we delineate the intricate structure and multifunctional role of the VAPB-PTPIP51 tether and discuss its profound implications in aging-associated diseases. Moreover, we provide a comprehensive overview of potential therapeutic interventions and pharmacological agents targeting the VAPB-PTPIP51-mediated MAMs, thereby offering a glimmer of hope in mitigating aging processes and treating age-related disorders.

7.
Int J Biol Macromol ; 269(Pt 2): 132271, 2024 Jun.
Article En | MEDLINE | ID: mdl-38734330

As an anti-infection antibiotic delivery route, a drug-controlled release system based on a specific condition stimulus response can enhance drug stability and bioavailability, reduce antibiotic resistance, achieve on-demand release and improve targeting and utilization efficiency. In this study, chitosan-coated liposomes containing levofloxacin (Lef@Lip@CS) were prepared with lysozyme in body fluids serving as an intelligent "switch" to enable accurate delivery of antibiotics through the catalytic degradation ability of chitosan. Good liposome encapsulation efficacy (64.89 ± 1.86 %) and loading capacity (5.28 ± 0.18 %) were achieved. The controlled-release behavior and morphological characterization before and after enzymatic hydrolysis confirmed that the levofloxacin release rate depended on the lysozyme concentration and the degrees of deacetylation of chitosan. In vitro bacteriostatic experiments showed significant differences in the effects of Lef@Lip@CS before and after enzyme addition, with 6-h inhibition rate of 72.46 % and 100 %, and biofilm removal rates of 51 % and 71 %, respectively. These findings show that chitosan-coated liposomes are a feasible drug delivery system responsive to lysozyme stimulation.


Chitosan , Drug Liberation , Levofloxacin , Liposomes , Muramidase , Muramidase/chemistry , Chitosan/chemistry , Levofloxacin/pharmacology , Levofloxacin/administration & dosage , Levofloxacin/chemistry , Liposomes/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Biofilms/drug effects , Delayed-Action Preparations , Microbial Sensitivity Tests
9.
J Pain Res ; 17: 1693-1707, 2024.
Article En | MEDLINE | ID: mdl-38746535

Background: Cerebral blood flow and vascular structures serve as the fundamental components of brain metabolism and circulation. Acupuncture, an alternative and complementary medical approach, has demonstrated efficacy in treating cerebral ischemic stroke (CIS). Nevertheless, the mechanisms underlying the impact of acupuncture on vascular smooth muscle cell (VSMC) function remain uncertain. The objective of this systematic review and meta-analysis is to assess the alterations in VSMC function following acupuncture stimulation in CIS models. Methods: The databases PubMed, Web of Science, SCOPUS, and EMBASE were queried until November 2022 using a predetermined search strategy. The FORMAT BY SYRCLE guidelines were adhered to, and the risk of bias of the included studies was evaluated using the Risk of Bias tool developed by the Systematic Review Centre for Laboratory Animal Experimentation. The random-effects model was employed to estimate the standardized mean difference (SMD). Results: Eighteen articles are included in this review. Acupuncture showed significant positive effects on the region cerebral blood flow (SMD=8.15 [95% CI, 4.52 to 11.78]) and neurological deficiency (SMD=-3.75 [95% CI, -5.54 to -1.97]). Descriptive analysis showed a probable mechanism of acupuncture stimulation in CIS rats related to VSMC function. Limitations and publication bias were presented in the studies. Conclusion: In this systematic review and meta-analysis, our findings indicate that acupuncture stimulation has the potential to improve regional cerebral blood flow and alleviate neurological deficits, possibly by regulating VSMC function. However, it is important to exercise caution when interpreting these results due to the limitations of animal experimental design and methodological quality.

10.
Nat Commun ; 15(1): 4180, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755148

Computational super-resolution methods, including conventional analytical algorithms and deep learning models, have substantially improved optical microscopy. Among them, supervised deep neural networks have demonstrated outstanding performance, however, demanding abundant high-quality training data, which are laborious and even impractical to acquire due to the high dynamics of living cells. Here, we develop zero-shot deconvolution networks (ZS-DeconvNet) that instantly enhance the resolution of microscope images by more than 1.5-fold over the diffraction limit with 10-fold lower fluorescence than ordinary super-resolution imaging conditions, in an unsupervised manner without the need for either ground truths or additional data acquisition. We demonstrate the versatile applicability of ZS-DeconvNet on multiple imaging modalities, including total internal reflection fluorescence microscopy, three-dimensional wide-field microscopy, confocal microscopy, two-photon microscopy, lattice light-sheet microscopy, and multimodal structured illumination microscopy, which enables multi-color, long-term, super-resolution 2D/3D imaging of subcellular bioprocesses from mitotic single cells to multicellular embryos of mouse and C. elegans.


Caenorhabditis elegans , Microscopy, Fluorescence , Animals , Caenorhabditis elegans/embryology , Microscopy, Fluorescence/methods , Mice , Imaging, Three-Dimensional/methods , Algorithms , Image Processing, Computer-Assisted/methods , Deep Learning
11.
BMC Pulm Med ; 24(1): 237, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745191

BACKGROUND: Diabetes mellitus (DM) can aggravate lung ischemia-reperfusion (I/R) injury and is a significant risk factor for recipient mortality after lung transplantation. Metformin protects against I/R injury in a variety of organs. However, the effect of metformin on diabetic lung I/R injury remains unclear. Therefore, this study aimed to observe the effect and mechanism of metformin on lung I/R injury following lung transplantation in type 2 diabetic rats. METHODS: Sprague-Dawley rats were randomly divided into the following six groups: the control + sham group (CS group), the control + I/R group (CIR group), the DM + sham group (DS group), the DM + I/R group (DIR group), the DM + I/R + metformin group (DIRM group) and the DM + I/R + metformin + Compound C group (DIRMC group). Control and diabetic rats underwent the sham operation or left lung transplantation operation. Lung function, alveolar capillary permeability, inflammatory response, oxidative stress, necroptosis and the p-AMPK/AMPK ratio were determined after 24 h of reperfusion. RESULTS: Compared with the CIR group, the DIR group exhibited decreased lung function, increased alveolar capillary permeability, inflammatory responses, oxidative stress and necroptosis, but decreased the p-AMPK/AMPK ratio. Metformin improved the function of lung grafts, decreased alveolar capillary permeability, inflammatory responses, oxidative stress and necroptosis, and increased the p-AMPK/AMPK ratio. In contrast, the protective effects of metformin were abrogated by Compound C. CONCLUSIONS: Metformin attenuates lung I/R injury and necroptosis through AMPK pathway in type 2 diabetic lung transplant recipient rats.


AMP-Activated Protein Kinases , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Lung Transplantation , Metformin , Necroptosis , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Metformin/pharmacology , Reperfusion Injury/prevention & control , Rats , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Necroptosis/drug effects , Male , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Experimental/complications , Oxidative Stress/drug effects , Lung/pathology , Lung/drug effects , Lung/metabolism , Signal Transduction/drug effects , Hypoglycemic Agents/pharmacology , Lung Injury/prevention & control , Lung Injury/etiology , Lung Injury/metabolism
12.
J Med Virol ; 96(5): e29670, 2024 May.
Article En | MEDLINE | ID: mdl-38773810

This study aimed to assess the predictive capacity of emerging serological markers, serum HBV RNA and HBcrAg, for HBeAg seroconversion in children with HBeAg-positive chronic hepatitis B (CHB). Treatment-naïve HBeAg-positive CHB children who admitted to the Liver Disease Center of Hunan Children's Hospital between April 2021 and September 2022 and received treatment with the combined entecavir and interferon-alpha treatment were recruited. Serum HBV RNA and HBcrAg were measured at baseline and Weeks 12, 24, and 48 of treatment. Our study showed that serum HBV RNA (HR = 0.71, 95% CI: 0.56-0.91, p = 0.006), HBcrAg (HR = 0.60, 95% CI: 0.43-0.84, p = 0.003), and HBsAg (HR = 0.49, 95%CI: 0.36-0.69, p < 0.001) at Week 12 were independent predictors of HBeAg seroconversion. ROC curve analysis presented that serum HBV RNA decline value (ΔHBV RNA) at Week 36 and HBcrAg decline value (ΔHBcrAg) at Week 12 (AUC = 0.871, p = 0.003 and AUC = 0.810, p = 0.003, respectively) could effectively predict HBeAg seroconversion. Furthermore, the optimal critical values were determined and the children with ΔHBV RNA > 3.759 log10 copies/mL at Week 36 or ΔHBcrAg >0.350 log10 U/mL at Week 12 more likely to achieve HBeAg seroconversion. The serum HBV RNA and HBcrAg provide new insights into the treatment of CHB in children. Early assessment of serum HBV RNA and HBcrAg during treatment can assist clinical decision-making and optimize individualized therapeutic approaches.


Antiviral Agents , Hepatitis B e Antigens , Hepatitis B virus , Hepatitis B, Chronic , RNA, Viral , Seroconversion , Humans , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Hepatitis B, Chronic/blood , Male , Female , Child , Hepatitis B e Antigens/blood , Antiviral Agents/therapeutic use , RNA, Viral/blood , Hepatitis B virus/genetics , Hepatitis B virus/immunology , Adolescent , Interferon-alpha/therapeutic use , Child, Preschool , Biomarkers/blood , Guanine/therapeutic use , Guanine/analogs & derivatives , Hepatitis B Core Antigens/blood , Hepatitis B Core Antigens/immunology , ROC Curve
13.
Article En | MEDLINE | ID: mdl-38768602

Vessel transplantation is currently considered the "gold standard" treatment for cardiovascular disease. However, ideal artificial vascular grafts should possess good biocompatibility and mechanical strength that match those of native autologous vascular tissue to promote in vivo tissue regeneration. In this study, a series of dynamic cross-linking double-network hydrogels and the resultant hydrogel tubes were prepared. The hydrogels (named PCO), composed of rigid poly(vinyl alcohol) (PVA), flexible carboxymethyl chitosan (CMCS), and a cross-linker of aldehyde-based ß-cyclodextrin (OCD), were formed in a double-network structure with multiple dynamical cross-linking including dynamic imine bonds, hydrogen bonds, and microcrystalline regions. The PCO hydrogels exhibited superior mechanical strength, good network stability, and fatigue resistance. Additionally, it demonstrated excellent cell and blood compatibility. The results showed that the introduction of CMCS/OCD led to a significant increase in the proliferation rate of endothelial cells seeded on the surface of the hydrogel. The hemolysis rate in the test was lower than 0.3%, and both protein adsorption and platelet adhesion were reduced, indicating an excellent anticoagulant function. The plasma recalcification time test results showed that endogenous coagulation was alleviated to some extent. When formed into blood vessels and incubated with blood, no thrombus formation was observed, and there was minimal red blood cell aggregation. Therefore, this novel hydrogel tube, with excellent mechanical properties, exhibits antiadhesive characteristics toward blood cells and proteins, as well as antithrombotic properties, making it hold tremendous potential for applications in the biomedical and engineering fields.

14.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2451-2460, 2024 May.
Article Zh | MEDLINE | ID: mdl-38812144

The different quality markers of Danggui Buxue Decoction before and after processing were studied based on fingerprint and network pharmacological research, and the seven screened index components were quantitatively analyzed, so as to provide an experimental basis for the quality evaluation of Danggui Buxue Decoction before and after processing. HPLC method was used to establish fingerprints of Danggui Buxue Decoction before and after processing, and a multivariate statistical method was used to analyze the cha-racteristic maps and common peak areas of Danggui Buxue Decoction before and after processing. The different characteristic components before and after processing were screened out, and related targets and pathways of their different components were constructed based on network pharmacology. Their components were quantitatively analyzed. A total of 13 common peaks were identified in the fingerprint of the Danggui Buxue Decoction sample, and seven main chemical components were identified, with similarity > 0.911. Further cluster analysis, principal component analysis, and partial least squares discriminant analysis were used to distinguish raw and processed products. According to VIP value, the main difference components 1, 2, 6, 13, and 5 of Danggui Buxue Decoction before and after processing were screened. By combining the "five principles" of TCM Q-marker and network pharmacology, 5-hydroxymethylfurfural, ferulic acid, calycosin-7-O-ß-D-glucoside, calycosin, ligusticolide, formononetin, and ligusticolide I were selected as the signature components of quality difference before and after processing. The results of the quantitative analysis showed that the content of ligustrin I, calycosin, formononetin, and ligusticum decreased after the Danggui Buxue Decoction was processed. The content of calycosin-7-O-ß-D-glucoside and ferulic acid increased. At the same time, a new chemical compound, namely 5-hydroxymethylfurfural was produced. The established fingerprint analysis method is stable and reliable. Combined with network pharmacology and quantitative research, it screens out the differential Q-marker, which provides an experimental basis for further research on processed products of Danggui Buxue Decoction.


Drugs, Chinese Herbal , Network Pharmacology , Quality Control , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/analysis , Chromatography, High Pressure Liquid
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 715-719, 2024 Jun 10.
Article Zh | MEDLINE | ID: mdl-38818556

OBJECTIVE: To explore the characteristics of SLCO1B1/SLCO1B3 gene variants among children with Rotor syndrome (RS). METHODS: Four children who were admitted to the Department of Hepatology of Hunan Children's Hospital between January 2019 and January 2022 were selected as the study subjects. Trio-whole exome sequencing was carried out for the four families, and gel electrophoresis was used to verify an insertional variant of long-interspersed element-1 (LINE-1). RESULTS: Genetic testing has identified three variants of the SLCO1B1 gene, including c.1738C>T (p.R580*), c.757C>T (p.R253*) and c.1622A>C (p.Q541P), and two variants of the SLCO1B3 gene, including c.481+22insLINE-1 and c.1747+1G>A among the children. Three of them were found to harbor homozygous variants of the SLCO1B1/SLCO1B3 genes, and one has harbored compound heterozygous variants. Sanger sequencing confirmed the existence of all variants, and gel electrophoresis has confirmed the existence of the LINE-1 insertional variant of about 6 kb within intron 6 of the SLCO1B3 gene in all children. CONCLUSION: The pathogenesis of the RS among the four children may be attributed to the variants of the SLCO1B1/SLCO1B3 genes. The LINE-1 insertion variant of the SLCO1B3 gene may be common among Chinese RS patients.


Genetic Testing , Solute Carrier Organic Anion Transporter Family Member 1B3 , Humans , Male , Female , Child , Solute Carrier Organic Anion Transporter Family Member 1B3/genetics , Child, Preschool , Genetic Testing/methods , Liver-Specific Organic Anion Transporter 1/genetics , Exome Sequencing , Infant , Mutation
16.
Plant J ; 2024 May 31.
Article En | MEDLINE | ID: mdl-38818975

Chemical compositions of crops are of great agronomical importance, as crops serve as resources for nutrition, energy, and medicines for human and livestock. For crop metabolomics research, the lack of crop reference metabolome and high-quality reference compound mass spectra, as well as utilities for metabolic profiling, has hindered the discovery and functional study of phytochemicals in crops. To meet these challenging needs, we have developed the Crop Metabolome database (abbreviated as CropMetabolome) that is dedicated to the construction of crop reference metabolome, repository, and dissemination of crop metabolomic data, and profiling and analytic tools for metabolomics research. CropMetabolome contains a metabolomics database for more than 50 crops (belonging to eight categories) that integrated self-generated raw mass spectral data and public-source datasets. The reference metabolome for 59 crop species was constructed, which have functions that parallel those of reference genome in genomic studies. CropMetabolome also contains 'Standard compound mass spectral library', 'Flavonoids library', 'Pesticide library', and a set of related analytical tools that enable metabolic profiling based on a reference metabolome (CropRefMetaBlast), annotation and identification of new metabolites (CompoundLibBlast), deducing the structure of novel flavonoid derivatives (FlavoDiscover), and detecting possible residual pesticides in crop samples (PesticiDiscover). In addition, CropMetabolome is a repository to share and disseminate metabolomics data and a platform to promote collaborations to develop reference metabolome for more crop species. CropMetabolome is a comprehensive platform that offers important functions in crop metabolomics research and contributes to improve crop breeding, nutrition, and safety. CropMetabolome is freely available at https://www.cropmetabolome.com/.

17.
Neurosci Bull ; 2024 May 31.
Article En | MEDLINE | ID: mdl-38819707

Knowledge about the neuronal dynamics and the projectome are both essential for understanding how the neuronal network functions in concert. However, it remains challenging to obtain the neural activity and the brain-wide projectome for the same neurons, especially for neurons in subcortical brain regions. Here, by combining in vivo microscopy and high-definition fluorescence micro-optical sectioning tomography, we have developed strategies for mapping the brain-wide projectome of functionally relevant neurons in the somatosensory cortex, the dorsal hippocampus, and the substantia nigra pars compacta. More importantly, we also developed a strategy to achieve acquiring the neural dynamic and brain-wide projectome of the molecularly defined neuronal subtype. The strategies developed in this study solved the essential problem of linking brain-wide projectome to neuronal dynamics for neurons in subcortical structures and provided valuable approaches for understanding how the brain is functionally organized via intricate connectivity patterns.

18.
Cancer Med ; 13(10): e7286, 2024 May.
Article En | MEDLINE | ID: mdl-38803199

OBJECTIVE: Radiotherapy (RT) is a cornerstone of the glioblastoma (GBM) treatment. However, the resistance of tumour cells to radiation results in early recurrence. The mechanisms underlying GBM radioresistance remain unclear. Screening for differentially expressed genes (DEGs) related to radiation might be a potential solution to this problem. METHOD: RT-associated DEGs were screened based on the RNA sequencing of 15 paired primary and recurrent GBMs. The mRNA and protein expression of candidate genes were validated in RNA sequencing of The Chinese Genome Atlas (CGGA) dataset and 18 cases of GBM samples. The relationship between the candidate gene and radiation was confirmed in irradiated GBM cells. The association of candidate gene with clinical characteristics and survival was investigated in the CGGA and TCGA dataset. Biological function and pathway analysis were explored by gene ontology analysis. The association of the candidate gene with radiosensitivity was verified using cell counting Kit-8, comet, and colony formation assays in vitro and subcutaneous tumour xenograft experiments in vivo. RESULTS: Gelsolin (GSN) was selected for further study. GSN expression was significant elevated in recurrent GBM and up-regulated in irradiated GBM cell lines. High expression of GSN was enriched in malignant phenotype of glioma. Moreover, high expression of GSN was associated with poor prognosis. Further investigation demonstrated that GSN-knockdown (GSN-KD) combined with RT significantly inhibited cell proliferation and enhanced radiosensitivity in vivo and in vitro. Mechanistically, GSN-KD could lead to more serious DNA damage and promotes apoptosis after RT. CONCLUSION: Radiation induced up-regulated of GSN. GSN-KD could enhance the radiosensitivity of GBM.


Brain Neoplasms , Gelsolin , Gene Expression Regulation, Neoplastic , Glioblastoma , Radiation Tolerance , Humans , Glioblastoma/genetics , Glioblastoma/radiotherapy , Glioblastoma/pathology , Radiation Tolerance/genetics , Gelsolin/genetics , Animals , Mice , Cell Line, Tumor , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Brain Neoplasms/pathology , Gene Knockdown Techniques , Xenograft Model Antitumor Assays , Prognosis , Cell Proliferation , Apoptosis/genetics , Apoptosis/radiation effects , Male , Female , Mice, Nude , Neoplasm Recurrence, Local/genetics
19.
Sci Rep ; 14(1): 10451, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714716

This study aimed to retrospectively analyze the perioperative and postoperative follow-up data of patients with super obesity who had undergone RYGB, SG, BPD/DS, and SADI-S. A retrospective observational study was conducted to analyze the perioperative and postoperative follow-up data of 60 patients with super obesity who had undergone bariatric surgery. A total of 34 men and 26 women were included in this study. The participants had an average preoperative BMI of 53.81 ± 3.25 kg/m2. The body weight and BMI of all four patient groups decreased significantly at 3, 6, and 12 months postoperatively compared with the preoperative values. Additionally, the TWL (%) and EWL (%) of all four groups increased gradually over the same period. Compared with the preoperative values, the systolic and diastolic blood pressure, glycosylated hemoglobin, uric acid, triglycerides, and total cholesterol decreased to varying degrees in the four groups 1 year postoperatively. RYGB, SG, BPD/DS, and SADI-S are all safe and effective in treating super obese patients and improving their metabolic diseases to a certain extent.


Bariatric Surgery , Body Mass Index , Obesity, Morbid , Humans , Male , Female , Adult , Obesity, Morbid/surgery , Obesity, Morbid/complications , Retrospective Studies , Middle Aged , Bariatric Surgery/methods , Treatment Outcome , China , Weight Loss , Follow-Up Studies , East Asian People
20.
Exp Hematol Oncol ; 13(1): 48, 2024 May 09.
Article En | MEDLINE | ID: mdl-38725070

BACKGROUND: Cancer is the leading cause of death among older adults. Although the integration of immunotherapy has revolutionized the therapeutic landscape of cancer, the complex interactions between age and immunotherapy efficacy remain incompletely defined. Here, we aimed to elucidate the relationship between aging and immunotherapy resistance. METHODS: Flow cytometry was performed to evaluate the infiltration of immune cells in the tumor microenvironment (TME). In vivo T cell proliferation, cytotoxicity and migration assays were performed to evaluate the antitumor capacity of tumor antigen-specific CD8+ T cells in mice. Real-time quantitative PCR (qPCR) was used to investigate the expression of IFN-γ-associated gene and natural killer (NK)-associated chemokine. Adoptive NK cell transfer was adopted to evaluate the effects of NK cells from young mice in overcoming the immunotherapy resistance of aged mice. RESULTS: We found that elderly patients with advanced non-small cell lung cancer (aNSCLC) aged ≥ 75 years exhibited poorer progression-free survival (PFS), overall survival (OS) and a lower clinical response rate after immunotherapy. Mechanistically, we showed that the infiltration of NK cells was significantly reduced in aged mice compared to younger mice. Furthermore, the aged NK cells could also suppress the activation of tumor antigen-specific CD8+ T cells by inhibiting the recruitment and activation of CD103+ dendritic cells (DCs). Adoptive transfer of NK cells from young mice to aged mice promoted TME remodeling, and reversed immunotherapy resistance. CONCLUSION: Our findings revealed the decreased sensitivity of elderly patients to immunotherapy, as well as in aged mice. This may be attributed to the reduction of NK cells in aged mice, which inhibits CD103+ DCs recruitment and its CD86 expression and ultimately leads to immunotherapy resistance.

...