Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 173
1.
Adv Sci (Weinh) ; : e2402768, 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38874399

Efficient neutrophil migration to infection sites plays a vital role in the body's defense against bacterial infections and natural immune responses. Neutrophils have a short lifespan and cannot be mass-cultured in vitro. Therefore, developing more stable artificial neutrophils (AN) in a controllable manner has become a research focus. However, existing AN lack chemotaxis, which is the ability to migrate toward high-signal-concentration positions in a dynamic blood- flow environment. Supplying AN with chemotaxis is key to designing AN that are more similar to natural neutrophils in terms of morphology and function. In this study, micrometer-sized, spherical, biocompatible AN are developed. These AN consist of zeolitic imidazolate framework-8 nanoparticles encapsulating two enzymes, coacervate droplet frameworks, and outer phospholipid bilayers carrying enzymes. The AN exhibit responsiveness to elevated hydrogen peroxide levels at inflammation sites, actively chemotaxing toward these sites along concentration gradients. They also demonstrate effective combat against Staphylococcus aureus infections. The capabilities of the AN are further validated through in vitro experiments and in vivo evaluations using vascular graft infection models. This study replicates natural neutrophils in terms of chemical composition, functionality, and physiological impact. It introduces new ideas for advancing the development of advanced artificial cells.

2.
Regen Biomater ; 11: rbae050, 2024.
Article En | MEDLINE | ID: mdl-38872841

Pulp regeneration remains a crucial target in the preservation of natural dentition. Using decellularized extracellular matrix is an appropriate approach to mimic natural microenvironment and facilitate tissue regeneration. In this study, we attempted to obtain decellularized extracellular matrix from periapical lesion (PL-dECM) and evaluate its bioactive effects. The decellularization process yielded translucent and viscous PL-dECM, meeting the standard requirements for decellularization efficiency. Proteomic sequencing revealed that the PL-dECM retained essential extracellular matrix components and numerous bioactive factors. The PL-dECM conditioned medium could enhance the proliferation and migration ability of periapical lesion-derived stem cells (PLDSCs) in a dose-dependent manner. Culturing PLDSCs on PL-dECM slices improved odontogenic/angiogenic ability compared to the type I collagen group. In vivo, the PL-dECM demonstrated a sustained supportive effect on PLDSCs and promoted odontogenic/angiogenic differentiation. Both in vitro and in vivo studies illustrated that PL-dECM served as an effective scaffold for pulp tissue engineering, providing valuable insights into PLDSCs differentiation. These findings pave avenues for the clinical application of dECM's in situ transplantation for regenerative endodontics.

3.
Comput Methods Programs Biomed ; 253: 108256, 2024 Aug.
Article En | MEDLINE | ID: mdl-38820713

OBJECTIVE: Numerous clinical and pathological studies have confirmed that lung injury can cause cardiovascular disease, but there is no explanation for the mechanism by which the degree of lung injury affects cardiac function. We attempt to reveal this mechanism of influence by simulating a cyclic model. METHOD: This study established a closed-loop cardiovascular model with a series of electrical parameters. Including the heart, lungs, arteries, veins, etc., each part of the cardiovascular system is modeled using centralized parameters. Adjusting these lung resistances to alter the degree of lung injury is aimed at reflecting the impact of different degrees of lung injury on cardiac function. Finally, analyze and compare the changes in blood pressure, aortic flow, atrioventricular volume, and atrioventricular pressure among different lung injuries to obtain the changes in cardiac function. RESULTS: In this model, the peak aortic flow decreased, the earlier the trough appeared, and the total aortic flow decreased. Left atrial blood pressure decreased from 6.5 mmHg to around 5.5 mmHg, left ventricular blood pressure decreased from 100 mmHg to around 50 mmHg, and aortic blood pressure also decreased from 100 mmHg to around 50 mmHg. The blood pressure in the pulmonary artery, right atrium, and right ventricle increases. The right ventricular blood pressure decreased from 20 mmHg to around 40 mmHg, while the right atrial blood pressure slightly increased. It can be seen that the increase in impedance has a greater impact on ventricular blood pressure than on atrium. Pulmonary arterial pressure significantly increases, rising from 20 mmHg to around 50 mmHg, forming pulmonary hypertension. The left ventricular end-systolic potential energy, filling energy, stroke work, stroke output, left ventricular filling period, maximum blood pressure during ventricular ejection period, and stroke energy efficiency decrease. CONCLUSION: We established a closed-loop cardiovascular model that reveals that the more severe lung injury, the higher blood pressure in the pulmonary artery, right atrium, and right ventricle, while the lower blood pressure in the left atrium, left ventricle, and aorta. The increase in pulmonary impedance leads to abnormalities in myocardial contraction, diastolic function, and cardiac reserve capacity, leading to a decrease in cardiac function. This closed-loop model provides a method for pre assessment of cardiovascular disease after lung injury.


Lung Injury , Humans , Lung Injury/physiopathology , Blood Pressure , Models, Cardiovascular , Heart/physiopathology , Computer Simulation , Lung/physiopathology , Lung/blood supply
4.
Nat Nanotechnol ; 2024 May 27.
Article En | MEDLINE | ID: mdl-38802669

Mitochondrial transplantation is an important therapeutic strategy for restoring energy supply in patients with ischaemic heart disease (IHD); however, it is limited by the invasiveness of the transplantation method and loss of mitochondrial activity. Here we report successful mitochondrial transplantation by oral administration for IHD therapy. A nitric-oxide-releasing nanomotor is modified on the mitochondria surface to obtain nanomotorized mitochondria with chemotactic targeting ability towards damaged heart tissue due to nanomotor action. The nanomotorized mitochondria are packaged in enteric capsules to protect them from gastric acid erosion. After oral delivery the mitochondria are released in the intestine, where they are quickly absorbed by intestinal cells and secreted into the bloodstream, allowing delivery to the damaged heart tissue. The regulation of disease microenvironment by the nanomotorized mitochondria can not only achieve rapid uptake and high retention of mitochondria by damaged cardiomyocytes but also maintains high activity of the transplanted mitochondria. Furthermore, results from animal models of IHD indicate that the accumulated nanomotorized mitochondria in the damaged heart tissue can regulate cardiac metabolism at the transcriptional level, thus preventing IHD progression. This strategy has the potential to change the therapeutic strategy used to treat IHD.

5.
Inflammation ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38700791

Periodontitis, characterized by progressive alveolar bone destruction, leads to the loss of attachment and stability of the affected teeth. Macrophages, especially the proinflammatory M1 subtype, are key in periodontitis pathogenesis, driving the disease's inflammatory and destructive processes. Despite existing insight into their involvement, comprehensive understanding of the underlying molecular mechanisms remains limited. TRPV1 is a non-selective cation channel protein and is known to regulate cellular function and homeostasis in macrophages. Our research objective was to investigate the impact of TRPV1 on the proinflammatory attributes of M1 macrophages in periodontal tissues, exploring potential mechanistic pathways. A mouse model of periodontitis was established using Porphyromonas gingivalis inoculation and ligature application around the maxillary second molar. Immunohistological analysis showed a significant reduction in macrophage TRPV1 expression in periodontitis-induced mice. Treatment with capsaicin, a TRPV1 agonist, was observed to effectively elevate TRPV1 expression in these macrophages. Furthermore, micro-computed tomography analysis revealed a marked decrease in alveolar bone resorption in the capsaicin -treated group, compared with vehicle and healthy control groups. Our in vitro findings show that capsaicin treatment successfully attenuated LPS-induced TNF-α and IL-6 production in macrophages, mediated through NRF2 activation, consequently reducing intracellular ROS levels. These findings suggest that TRPV1 agonists, through modulating M1 macrophage activity and up-regulating TRPV1, could be a novel therapeutic approach in periodontal disease management.

6.
Acad Radiol ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38755068

RATIONALE AND OBJECTIVES: The mechanism of comorbidity between alcohol dependence and depressive disorders are not well understood. This study investigated differences in the brain function of alcohol-dependent patients with and without depression by performing functional connectivity analysis using resting-state functional magnetic resonance imaging. MATERIALS AND METHODS: A total of 29 alcohol-dependent patients with depression, 31 alcohol-dependent patients without depression and 31 healthy control subjects were included in this study. The resting-state functional connectivity between the amygdala and the whole brain was compared among the three groups. Additionally, we examined the correlation between functional connectivity values in significantly different brain regions and levels of alcohol dependence and depression. RESULTS: The resting-state functional connectivity between the left amygdala and the right caudate nucleus was decreased in alcohol-dependent patients. Additionally, the resting-state functional connectivity of the right amygdala with the right caudate nucleus, right transverse temporal gyrus, right temporal pole: superior temporal gyrus were also decreased. In alcohol-dependent patients with depression, not only was functional connectivity between the above brain regions significantly decreased, but so was functional connectivity between the right amygdala and the left middle temporal gyrus. Also, there was no significant correlation between the resting-state functional connectivity values in statistically significant brain regions and the levels of alcohol dependence and depression. CONCLUSION: The impairment of the functional connectivity of the amygdala with caudate nucleus and partial temporal lobe may be involved in the neural mechanism of alcohol dependence comorbidity depressive disorders.

7.
J Affect Disord ; 356: 363-370, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38615848

BACKGROUND: Previous neuroimaging and pathological studies have found myelin-related abnormalities in bipolar disorder (BD), which prompted the use of magnetic resonance (MR) imaging technology sensitive to neuropathological changes to explore its neuropathological basis. We holistically investigated alterations in myelin within BD patients by inhomogeneous magnetization transfer (ihMT), which is sensitive and specific to myelin content. METHODS: Thirty-one BD and 42 healthy controls (HC) were involved. Four MR metrics, i.e., ihMT ratio (ihMTR), pseudo-quantitative ihMT (qihMT), magnetization transfer ratio and pseudo-quantitative magnetization transfer (qMT), were compared between groups using analysis methods based on whole-brain voxel-level and white matter regions of interest (ROI), respectively. RESULTS: The voxel-wise analysis showed significantly inter-group differences of ihMTR and qihMT in the corpus callosum. The ROI-wise analysis showed that ihMTR, qihMT, and qMT values in BD group were significantly lower than that in HC group in the genu and body of corpus callosum, left anterior limb of the internal capsule, left anterior corona radiate, and bilateral cingulum (p < 0.001). And the qihMT in genu of corpus callosum and right cingulum were negatively correlated with depressive symptoms in BD group. LIMITATIONS: This study is based on cross-sectional data and the sample size is limited. CONCLUSION: These findings suggest the reduced myelin content of anterior midline structure in the bipolar patients, which might be a critical pathophysiological feature of BD.


Bipolar Disorder , Magnetic Resonance Imaging , Myelin Sheath , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/pathology , Female , Male , Adult , Myelin Sheath/pathology , Middle Aged , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , White Matter/diagnostic imaging , White Matter/pathology , Case-Control Studies , Brain/diagnostic imaging , Brain/pathology
8.
J Am Chem Soc ; 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38602012

Zeolitic imidazolate frameworks (ZIFs) hold great promise in carbon capture, owing to their structural designability and functional porosity. However, intrinsic linker dynamics limit their pressure-swing adsorption application to biogas upgrading and methane purification. Recently, a functionality-locking strategy has shown feasibility in suppressing such dynamics. Still, a trade-off between structural rigidity and uptake capacity remains a key challenge for optimizing their high-pressure CO2/CH4 separation performance. Here, we report a sequential structural locking (SSL) strategy for enhancing the CO2 capture capacity and CH4 purification productivity in dynamic ZIFs (dynaZIFs). Specifically, we isolated multiple functionality-locked phases, ZIF-78-lt, -ht1, and -ht2, by activation at 50, 160, and 210 °C, respectively. We observed multiple-level locking through gas adsorption and powder X-ray diffraction. We uncovered an SSL mechanism dominated by linker-linker π-π interactions that transit to C-H···O hydrogen bonds with binding energies increasing from -0.64 to -2.77 and -5.72 kcal mol-1, respectively, as evidenced by single-crystal X-ray diffraction and density functional theory calculations. Among them, ZIF-78-ht1 exhibits the highest CO2 capture capacity (up to 18.6 mmol g-1) and CH4 purification productivity (up to 7.6 mmol g-1) at 298 K and 30 bar. These findings provide molecular and energetic insights into leveraging framework flexibility through the SSL mechanism to optimize porous materials' separation performance.

9.
Adv Healthc Mater ; : e2303709, 2024 Mar 02.
Article En | MEDLINE | ID: mdl-38431770

The preservation of vital pulps is crucial for maintaining the physiological functions of teeth; however, vital pulp therapy (VPT) of pulpitis teeth remains a substantial challenge due to uncontrolled infection, excessive inflammation, and limited regenerative potential. Current pulp capping agents have restricted effects in the infectious and inflammatory microenvironment. To address this, a multifunctional hydrogel (TGH/DM) with antibacterial, immunomodulatory, and mineralization-promoting effects is designed. The antimicrobial peptide (AMP) and demineralized dentin matrix are incorporated into the hydrogel, achieving sustainable delivery of AMP and a cocktail of growth factors. In vitro results show that TGH/DM could kill endodontic microbiota, ameliorate inflammatory responses of human dental pulp stem cells (hDPSCs), and prompt odontogenic differentiation of inflammatory hDPSCs via activation of peroxisome proliferator-activated receptor gamma. In vivo results suggest that TGH/DM is capable of inducing M2 phenotype transformation of macrophages in mice and fostering the regeneration of the dentin-pulp complex in inflamed pulps of beagle dogs. Overall, this study first proposes the synergistic regulation of AMP and tissue-specific extracellular matrix for the treatment of pulpitis, and the advanced hydrogel provides a facile and effective way for VPT.

10.
Nat Commun ; 15(1): 2411, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38499604

Installing different chemical entities onto crystalline frameworks with well-defined spatial distributions represents a viable approach to achieve ordered and complex synthetic materials. Herein, a covalent organic framework (COF-305) is constructed from tetrakis(4-aminophenyl)methane and 2,3-dimethoxyterephthalaldehyde, which has the largest unit cell and asymmetric unit among known COFs. The ordered complexity of COF-305 is embodied by nine different stereoisomers of its constituents showing specific sequences on topologically equivalent sites, which can be attributed to its building blocks deviating from their intrinsically preferred simple packing geometries in their molecular crystals to adapt to the framework formation. The insight provided by COF-305 supplements the principle of covalent reticular design from the perspective of non-covalent interactions and opens opportunities for pursuing complex chemical sequences in molecular frameworks.

11.
J Anim Sci ; 1022024 Jan 03.
Article En | MEDLINE | ID: mdl-38354297

Improving the feeding efficiency of dairy cows is a key component to improve the utilization of land resources and meet the demand for high-quality protein. Advances in genomic methods and omics techniques have made it possible to breed more efficient dairy cows through genomic selection. The aim of this review is to obtain a comprehensive understanding of the biological background of feed efficiency (FE) complex traits in purebred Holstein dairy cows including heritability estimate, and genetic markers, genes, and pathways participating in FE regulation mechanism. Through a literature search, we systematically reviewed the heritability estimation, molecular genetic markers, genes, biomarkers, and pathways of traits related to feeding efficiency in Holstein dairy cows. A meta-analysis based on a random-effects model was performed to combine reported heritability estimates of FE complex. The heritability of residual feed intake, dry matter intake, and energy balance was 0.20, 0.34, and 0.22, respectively, which proved that it was reasonable to include the related traits in the selection breeding program. For molecular genetic markers, a total of 13 single-nucleotide polymorphisms and copy number variance loci, associated genes, and functions were reported to be significant across populations. A total of 169 reported candidate genes were summarized on a large scale, using a higher threshold (adjusted P value < 0.05). Then, the subsequent pathway enrichment of these genes was performed. The important genes reported in the articles were included in a gene list and the gene list was enriched by gene ontology (GO):biological process (BP), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis. Three GO:BP terms and four KEGG terms were statistically significant, which mainly focused on adenosine triphosphate (ATP) synthesis, electron transport chain, and OXPHOS pathway. Among these pathways, involved genes such as ATP5MC2, NDUFA, COX7A2, UQCR, and MMP are particularly important as they were previously reported. Twenty-nine reported biological mechanisms along with involved genes were explained mainly by four biological pathways (insulin-like growth factor axis, lipid metabolism, oxidative phosphorylation pathways, tryptophan metabolism). The information from this study will be useful for future studies of genomic selection breeding and genetic structures influencing animal FE. A better understanding of the underlying biological mechanisms would be beneficial, particularly as it might address genetic antagonism.


A thorough understanding of the genetic factors that influence the feed efficiency of dairy cows is a prerequisite for planning and implementing selective breeding programs. Therefore, a systematic review of reported heritability, genetic markers, and biological pathways affecting FE-related traits in Holstein dairy cows was conducted and followed by a meta-analysis. A total of 47 articles were refined after literature screening and were presented in this review. A meta-analysis based on a random-effects model was then performed to combine the heritability estimates from studies. The meta-analysis showed heritability estimates of residual feed intake, dry matter intake, and energy balance were 0.22, 0.34, and 0.24, respectively. The systematic review demonstrated that 169 significant candidate genes, 13 genetic markers, and 29 biological mechanisms were previously reported on FE in Holstein dairy cows. Involved candidate genes and biological mechanisms are presented mainly in four biological mechanisms (insulin-like growth factors axis, lipid metabolism, oxidative phosphorylation pathways, tryptophan metabolism). The meta-analysis of the reported candidate genes showed three statistically significant KEGG terms and four GO:BP terms, which mainly focused on ATP synthesis, electron transport chain, and OXPHOS pathway.


Genome , Lactation , Female , Cattle/genetics , Animals , Lactation/genetics , Genetic Markers , Phenotype , Eating/genetics , Animal Feed , Milk/metabolism
12.
Front Microbiol ; 15: 1307610, 2024.
Article En | MEDLINE | ID: mdl-38348192

Introduction: This study aimed to determine the prevalence and virulome of Listeria in fresh produce distributed in urban communities. Methods: A total of 432 fresh produce samples were collected from farmer's markets in Michigan and West Virginia, USA, resulting in 109 pooled samples. Listeria spp. were isolated and L. monocytogenes was subjected to genoserogrouping by PCR and genotyping by pulsed-field gel electrophoresis (PFGE). Multi-locus sequence typing (MLST) and core-genome multi-locus sequence typing (cgMLST) were conducted for clonal identification. Results: Forty-eight of 109 samples (44.0%) were contaminated with Listeria spp. L. monocytogenes serotype 1/2a and 4b were recovered from radishes, potatoes, and romaine lettuce. Four clonal complexes (CC) were identified and included hypervirulent CC1 (ST1) and CC4 (ST219) of lineage I as well as CC7 (ST7) and CC11 (ST451) of lineage II. Clones CC4 and CC7 were present in the same romaine lettuce sample. CC1 carried Listeria pathogenicity island LIPI-1 and LIPI-3 whereas CC4 contained LIPI-1, LIPI-3, and LIPI-4. CC7 and CC11 had LIPI-1 only. Discussion: Due to previous implication in outbreaks, L. monocytogenes hypervirulent clones in fresh produce pose a public health concern in urban communities.

13.
Proc Natl Acad Sci U S A ; 121(5): e2320237121, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38252821

Dynamic 3D covalent organic frameworks (COFs) have shown concerted structural transformation and adaptive gas adsorption due to the conformational diversity of organic linkers. However, the isolation and observation of COF rotamers constitute undergoing challenges due to their comparable free energy and subtle rotational energy barrier. Here, we report the atomic-level observation and structural evolution of COF rotamers by cryo-3D electron diffraction and synchrotron powder X-ray diffraction. Specifically, we optimize the crystallinity and morphology of COF-320 to manifest its coherent dynamic responses upon adaptive inclusion of guest molecules. We observe a significant crystal expansion of 29 vol% upon hydration and a giant swelling with volume change up to 78 vol% upon solvation. We record the structural evolution from a non-porous contracted phase to two narrow-pore intermediate phases and the fully opened expanded phase using n-butane as a stabilizing probe at ambient conditions. We uncover the rotational freedom of biphenylene giving rise to significant conformational changes on the diimine motifs from synclinal to syn-periplanar and anticlinal rotamers. We illustrate the 10-fold increment of pore volumes and 100% enhancement of methane uptake capacity of COF-320 at 100 bar and 298 K. The present findings shed light on the design of smarter organic porous materials to maximize host-guest interaction and boost gas uptake capacity through progressive structural transformation.

14.
Int J Biol Macromol ; 261(Pt 1): 129670, 2024 Mar.
Article En | MEDLINE | ID: mdl-38280697

The oxidative microenvironment in fibrotic livers often diminishes the effectiveness of mesenchymal stem cells (MSCs)-based therapy. Recent research suggests that pharmacological pre-treatment could enhance the therapeutic performance of MSCs. In this study, we assessed the impact of Arctium lappa L. polysaccharides (ALP) on the biological properties of nasal ectomesenchymal stem cells (EMSCs) and investigated the augmenting effect of ALP pretreatment on EMSCs (ALP-EMSCs) for the treatment of liver fibrosis. ALP treatment demonstrated multiple biological impacts on EMSC functions regarding liver fibrosis: firstly, it maintained the stemness of the cells while boosting the EMSCs' paracrine effects; secondly, it increased the expression of anti-inflammatory and antioxidant factors; thirdly, it inhibited the activation of hepatic stellate cells (HSCs) and liver collagen build-up by modulating the Wnt/ß-catenin signaling pathways. Collectively, these effects helped to halt the progression of liver fibrosis. Therefore, the use of ALP-EMSCs presents an innovative and promising approach for treating hepatic fibrosis in clinical scenarios.


Arctium , Mesenchymal Stem Cells , Humans , beta Catenin/metabolism , Wnt Signaling Pathway , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism
15.
Aging (Albany NY) ; 16(1): 267-284, 2024 Jan 04.
Article En | MEDLINE | ID: mdl-38180745

The accumulation of intracellular disulfides induces a novel and unique form of metabolic-related cell death known as disulfidptosis. A previous study revealed the prognostic value of a risk model of disulfidptosis-related genes in hepatocellular carcinoma (HCC). However, to date, no studies have investigated the relationship between disulfidptosis-related long non-coding RNAs (DRLs) and HCC. In this study, we collected and analyzed RNA sequencing data from 370 HCC samples to explore the DRLs in the tumorigenesis and development of HCC. By employing Lasso Cox regression and multivariate Cox regression analyses, we identified five prognostic DRLs, which were used to construct a prognostic signature. The signature was subsequently validated using receiver operating characteristic (ROC) curves, Kaplan-Meier analysis, Cox regression analyses, nomograms, and calibration curves. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) were performed, revealing that the DRLs signature was associated with HCC and several cancer-related pathways. Furthermore, the DRLs signature showed correlations with the infiltration of M0 and M1 macrophages, immune-related functions, and multiple immune checkpoints, including PDCD1, LAG3, CTLA4, TIGIT, CD47, and others. Analysis using the tumor immune dysfunction and exclusion (TIDE) approach demonstrated that the DRLs signature could predict the response to immunotherapy. Finally, we screened potential chemotherapy drugs that could sensitize HCC. In conclusion, our novel DRLs signature provides valuable insights into predicting patient survival and immunotherapy responses.


Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Hepatocellular/genetics , RNA, Long Noncoding/genetics , Liver Neoplasms/genetics , Calibration , Immunity , Prognosis
17.
Article En | MEDLINE | ID: mdl-38082798

Multi-tile image stitching aims to merge multiple natural or biomedical images into a single mosaic. This is an essential step in whole-slide imaging and large-scale pathological imaging systems. To tackle this task, a multi-step framework is usually used by first estimating the optimal transformation for each image and then fusing them into a whole image. However, the traditional approaches are usually time-consuming and require manual adjustments. Advances in deep learning techniques provide an end-to-end solution to register and fuse information of multiple tile images. In this paper, we present a deep learning model for multi-tile biomedical image stitching, namely MosaicNet, consisting of an aligning network and a fusion network. We trained the MosaicNet network on a large simulation dataset based on the VOC2012 dataset and evaluated the model on multiple types of datasets, including simulated natural images, mouse brain T2-weighted Magnetic Resonance Imaging (T2w-MRI) data, and mouse brain polarization sensitive-optical coherence tomography (PS-OCT) data. Our method outperformed traditional approaches on both natural images and brain imaging data. The proposed method is robust to different settings of hyper-parameters and shows high computational efficiency, up to approximately 32 times faster than the conventional methods.


Deep Learning , Image Processing, Computer-Assisted , Animals , Mice , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Computer Simulation , Brain/diagnostic imaging
18.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 150-154, 2023 Oct 31.
Article En | MEDLINE | ID: mdl-37953571

To provide clinical evidence for the management of hypoxic-ischemic encephalopathy (HIE) by analyzing the role of soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) and colony-stimulating factor-1 (CSF1) in the disease. We purchased 15 Sprague-Dawley (SD) rat pups and randomized them into five groups (n=3), of which one group was untreated as the control group and the other four were modeled by HIE. After modeling, a group was treated as a model group without any treatment, another group was injected with sLOX-1-silencing lentiviral vector (sLOX-1-si group), and the third and fourth were injected with CSF1-silencing lentiviral vector (CSF1-si group) and an equal amount of normal saline (blank group), respectively. After the corresponding intervention, the rat tissue in each group was obtained to observe the pathological injury by HE and TUNEL staining. In addition, sLOX-1, CSF1, 5-hydroxytryptamine (5-HT), dopamine (DA), and norepinephrine (NE) levels in brain tissue of each group were determined. The model group showed more severe pathological damage of the hippocampus and higher neuronal apoptosis than the control group. Besides, higher sLOX-1 and CSF1 levels and lower 5-HT, DA and NE contents were identified in the model group versus the control group (P<0.05). Compared with the blank group, sLOX-1-si and CSF1-si groups showed significantly alleviated hippocampal damage, inhibited neuronal apoptosis, reduced 5-HT, DA, NE, Bax, and cl-caspase-3, and increased Bcl-2 (P<0.05). Silencing sLOX-1 and CSF1 expression ameliorated the pathological injury of HIE and inhibited neuronal apoptosis.


Hypoxia-Ischemia, Brain , Rats , Animals , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Animals, Newborn , Rats, Sprague-Dawley , Serotonin , Apoptosis , Scavenger Receptors, Class E
19.
Brain Behav ; 13(12): e3315, 2023 12.
Article En | MEDLINE | ID: mdl-37932960

BACKGROUND: Gaming behavior can induce cerebral changes that may be related to the neurobiological features of gaming disorder (GD). Additionally, individuals with higher levels of depression or impulsivity are more likely to experience GD. Therefore, the present pilot study explored potential neurobiological correlates of GD in the context of depression and impulsivity, after accounting for video gaming behavior. METHODS: Using resting-state functional magnetic resonance imaging (fMRI), a cross-sectional study was conducted with 35 highly involved male adult gamers to examine potential associations between GD severity and regional homogeneity (ReHo) in the entire brain. A mediation model was used to test the role of ReHo in the possible links between depression/impulsivity and GD severity. RESULTS: Individuals with greater GD severity showed increased ReHo in the right Heschl's gyrus and decreased ReHo in the right hippocampus (rHip). Furthermore, depression and impulsivity were negatively correlated with ReHo in the rHip, respectively. More importantly, ReHo in the rHip was found to mediate the associations between depression/impulsivity and GD. CONCLUSIONS: These preliminary findings suggest that GD severity is related to ReHo in brain regions associated with learning/memory/mood and auditory function. Higher levels of depression or impulsivity may potentiate GD through the functional activity of the hippocampus. Our findings advance our understanding of the neurobiological differences behind GD symptoms in highly involved gamers.


Behavior, Addictive , Magnetic Resonance Imaging , Adult , Humans , Male , Pilot Projects , Magnetic Resonance Imaging/methods , Cross-Sectional Studies , Brain
20.
Mol Ther Methods Clin Dev ; 31: 101152, 2023 Dec 14.
Article En | MEDLINE | ID: mdl-38027061

Recent studies have shown that mitochondrial transplantation can repair lower limb IRI, but the underlying mechanism of the repair effect remains unclear. In this study, we found that in addition to being taken up by skeletal muscle cells, human umbilical cord mesenchymal stem cells (hMSCs)-derived mitochondria were also taken up by adipocytes, which was accompanied by an increase in optic atrophy 1 (OPA1) and uncoupling protein 1. Transplantation of hMSCs-derived mitochondria could not only supplement the original damaged mitochondrial function of skeletal muscle, but also promote adipocyte browning by increasing the expression of OPA1. In this process, mitochondrial transplantation can reduce cell apoptosis and repair muscle tissue, which promotes the recovery of motor function in vivo. To the best of our knowledge, there is no study on the therapeutic mechanism of mitochondrial transplantation from this perspective, which could provide a theoretical basis.

...