Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.034
Filter
1.
Open Med (Wars) ; 19(1): 20240959, 2024.
Article in English | MEDLINE | ID: mdl-38961882

ABSTRACT

The aim of the present study was to explore the risk factors of postoperative airway complications in children with oral floor mass. The first choice of auxiliary examination method for children with oral floor mass is also proposed. This retrospective study included 50 children with floor-of-mouth (FOM) masses. Medical records were reviewed, and information on age of onset, functional impacts present, age at consultation, imaging findings, history of preoperative aspiration, pathology findings, properties of biopsied fluid, treatment modality, postoperative outcomes, and operation were recorded. A total of 20 patients exhibited functional impacts such as difficulty in breathing and feeding. Ultrasound examination was performed in 28 cases; and magnetic resonance imaging, in 38 cases. The diagnosis was lymphatic malformation in 12 cases, developmental cyst in 29 cases, and solid mass in 7 cases. There were 28 cases of surgical resection, 9 cases underwent multiple puncture volume reduction followed by surgery, 11 cases treated using sclerotherapy injection, and 1 case treated using sclerotherapy injection and surgical resection. Young age, functional impact, and high grade of lymphatic duct malformation increased the risk of surgical treatment. B-scan ultrasound is the first choice for the diagnosis of FOM masses in children.

2.
Biomolecules ; 14(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38927118

ABSTRACT

Ginseng (Panax ginseng C. A. Meyer) is an ancient and valuable Chinese herbal medicine, and ginsenoside, as the main active ingredient of ginseng, has received wide attention because of its various pharmacological active effects. Cytochrome P450 is the largest family of enzymes in plant metabolism and is involved in the biosynthesis of terpenoids, alkaloids, lipids, and other primary and secondary plant metabolites. It is significant to explore more PgCYP450 genes with unknown functions and reveal their roles in ginsenoside synthesis. In this study, based on the five PgCYP450 genes screened in the pre-laboratory, through the correlation analysis with the content of ginsenosides and the analysis of the interactions network of the key enzyme genes for ginsenoside synthesis, we screened out those highly correlated with ginsenosides, PgCYP309, as the target gene from among the five PgCYP450 genes. Methyl jasmonate-induced treatment of ginseng adventitious roots showed that the PgCYP309 gene responded to methyl jasmonate induction and was involved in the synthesis of ginsenosides. The PgCYP309 gene was cloned and the overexpression vector pBI121-PgCYP309 and the interference vector pART27-PgCYP309 were constructed. Transformation of ginseng adventitious roots by the Agrobacterium fermentum-mediated method and successful induction of transgenic ginseng hairy roots were achieved. The transformation rate of ginseng hairy roots with overexpression of the PgCYP309 gene was 22.7%, and the transformation rate of ginseng hairy roots with interference of the PgCYP309 gene was 40%. Analysis of ginseng saponin content and relative gene expression levels in positive ginseng hairy root asexual lines revealed a significant increase in PPD, PPT, and PPT-type monomeric saponins Re and Rg2. The relative expression levels of PgCYP309 and PgCYP716A53v2 genes were also significantly increased. PgCYP309 gene promotes the synthesis of ginsenosides, and it was preliminarily verified that PgCYP309 gene can promote the synthesis of dammarane-type ginsenosides.


Subject(s)
Cytochrome P-450 Enzyme System , Ginsenosides , Panax , Panax/genetics , Panax/metabolism , Panax/enzymology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Ginsenosides/metabolism , Ginsenosides/biosynthesis , Gene Expression Regulation, Plant/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Oxylipins/pharmacology , Oxylipins/metabolism , Acetates/pharmacology , Acetates/metabolism , Cyclopentanes/pharmacology , Cyclopentanes/metabolism
3.
BMC Plant Biol ; 24(1): 549, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38872078

ABSTRACT

Ginseng (Panax ginseng C. A. Mey.) is an important and valuable medicinal plant species used in traditional Chinese medicine, and its metabolite ginsenoside is the primary active ingredient. The FAR1/FHY3 gene family members play critical roles in plant growth and development as well as participate in a variety of physiological processes, including plant development and signaling of hormones. Studies have indicated that methyl jasmonate treatment of ginseng adventitious roots resulted in a significant increase in the content of protopanaxadiol ginsenosides. Therefore, it is highly significant to screen the FAR1/FHY3 gene family members in ginseng and preliminarily investigate their expression patterns in response to methyl jasmonic acid signaling. In this study, we screened and identified the FAR1/FHY3 family genes in the ginseng transcriptome databases. And then, we analyzed their gene structure and phylogeny, chromosomal localization and expression patterns, and promoter cis-acting elements, and made GO functional annotations on the members of this family. After that, we treated the ginseng adventitious roots with 200 mM methyl jasmonate and investigated the trend of the expression of four genes containing the largest number of methyl jasmonate cis-acting elements at different treatment times. All four genes were able to respond to methyl jasmonate, the most significant change was in the PgFAR40 gene. This study provides data support for subsequent studies of this family member in ginseng and provides experimental reference for subsequent validation of the function of this family member under methyl jasmonic acid signaling.


Subject(s)
Acetates , Cyclopentanes , Gene Expression Regulation, Plant , Multigene Family , Oxylipins , Panax , Phylogeny , Plant Proteins , Oxylipins/pharmacology , Cyclopentanes/pharmacology , Panax/genetics , Panax/metabolism , Panax/drug effects , Acetates/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Plant Roots/genetics , Plant Roots/drug effects , Plant Roots/metabolism , Gene Expression Profiling , Genes, Plant , Ginsenosides
4.
J Oral Rehabil ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38894533

ABSTRACT

BACKGROUND: Painful temporomandibular disorder (TMD) is the common cause of chronic oro-facial pain, which may interfere with sleep. Previous studies have documented an association between sleep and TMD. OBJECTIVES: This study aimed to further explore the association of night-time sleep and daytime napping with painful TMD. METHODS: A total of 419 patients (aged 31.88 ± 11.54 years with women forming 85.4%) from a TMD/Orofacial Pain center were enrolled. Patients' sleep conditions were evaluated with the Pittsburgh Sleep Quality Index (PSQI) questionnaire, and information on night-time sleep duration, napping duration and napping frequency was interviewed. TMD was diagnosed according to the Diagnostic Criteria for TMD protocol and stratified into myalgia (muscle pain), arthralgia (joint pain) and combined (muscle and joint pain) subgroups. The severity of TMD was measured with the Fonseca Anamnestic Index (FAI) questionnaire. Restricted cubic spline (RCS) regression models were established to explore relationships between sleep and painful TMD subgroups. RESULTS: Patients with poor sleep quality (PSQI≥6) had higher FAI scores (median 60, p < .001) and higher proportions of painful TMDs. The myalgia subgroup had higher PSQI scores (median 8, p < .001) than the arthralgia subgroup. The RCS models indicated a non-linear relationship between night-time sleep duration and myalgia (p < .001), which was not observed in arthralgia. However, there were no significant findings concerning napping and painful TMD subgroups. CONCLUSION: This study found that the association between sleep and TMD is mainly related to painful TMD conditions, which are associated with night-time sleep duration.

5.
Acad Radiol ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38937153

ABSTRACT

RATIONALE AND OBJECTIVES: Early identification for hematoma expansion can help improve patient outcomes. Presently, there are many methods to predict hematoma expansion. This study compared a variety of models to find a model suitable for clinical promotion. MATERIALS AND METHODS: Non-contrast head CT images and clinical data were collected from 203 patients diagnosed with hypertensive intracerebral hemorrhage. Radiomics features were extracted from all CT images, and the dataset was randomly divided into training and validation sets (7:3 ratio) after applying the synthetic minority oversampling method. The radiomics score (Radscore) was calculated using least absolute shrinkage and selection operator (LASSO) regression, combined with selected clinical predictors, to develop a nomogram and four machine learning (ML) models: logistic regression, random forest, support vector machine, and extreme gradient boosting (XGBoost). Discrimination, calibration and clinical usefulness of the nomogram and ML models were assessed. RESULTS: The nomogram and ML models were integrated with Radscore and clinical predictors. The nomogram demonstrated favorable discriminatory ability in the training set with an AUC of 0.80, which was confirmed in the validation set (AUC=0.76). Among the ML models, the XGBoost model achieved the highest AUC (training set=0.89 and validation set=0.85), surpassing that of the nomogram. The XGBoost model exhibited good clinical usefulness. CONCLUSION: Both the nomogram and ML models constructed by non-contrast head CT image-based Radscore integrated with clinical predictors can predict early hematoma expansion of hypertensive intracerebral hemorrhage, and the XGBoost model had the highest prediction performance and best clinical usefulness.

6.
Cell Death Dis ; 15(5): 342, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760378

ABSTRACT

U3 snoRNA is essential for ribosome biogenesis during interphase. Upon mitotic onset, the nucleolus disassembles and U3 snoRNA relocates to the perichromosomal region (PR) to be considered as a chromosome passenger. Whether U3 controls mitosis remains unknown. Here, we demonstrate that U3 snoRNA is required for mitotic progression. We identified DDX21 as the predominant U3-binding protein during mitosis and confirmed that U3 snoRNA colocalizes with DDX21 in the PR. DDX21 knockdown induces mitotic catastrophe and similar mitotic defects caused by U3 snoRNA depletion. Interestingly, the uniform PR distribution of U3 snoRNA and DDX21 is interdependent. DDX21 functions in mitosis depending on its PR localization. Mechanistically, U3 snoRNA regulates DDX21 PR localization through maintaining its mobility. Moreover, Cy5-U3 snoRNA downsizes the fibrous condensates of His-DDX21 at proper molecular ratios in vitro. This work highlights the importance of the equilibrium between U3 snoRNA and DDX21 in PR formation and reveals the potential relationship between the PR assembly and mitotic regulation.


Subject(s)
DEAD-box RNA Helicases , Mitosis , RNA, Small Nucleolar , Humans , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , RNA, Small Nucleolar/metabolism , RNA, Small Nucleolar/genetics , HeLa Cells
7.
Abdom Radiol (NY) ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753211

ABSTRACT

PURPOSE: This study aimed to assess the predictive efficacy of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in parametrial invasion (PMI) in cervical cancer patients. METHODS: A total of 83 cervical cancer patients (32 PMI-positive and 51 PMI-negative) retrospectively underwent pretreatment IVIM-DWI and DCE-MRI scans. IVIM-DWI parameters included apparent diffusion coefficient (ADC), slow apparent diffusion coefficient (D), fast apparent diffusion coefficient (D*), and perfusion fraction (f). DCE-MRI parameters included volume transfer constant (Ktrans), flux rate constant (Kep), and fractional extravascular extracellular space volume (Ve). Logistic regression analyses were conducted to identify independent variables associated with PMI. Receiver operating characteristic curves were generated to assess the predictive performance of significant parameters. RESULTS: Multivariable analysis revealed that the MRI parameters D (odds ratio [OR]: 7.05; 95% CI 1.78-27.88; P = 0.005), D* (OR 6.58; 95% CI 1.49-29.10; P = 0.01), f (OR 5.12; 95% CI 1.23-21.37; P = 0.03), Ktrans (OR 4.60; 95% CI 1.19-17.81; P = 0.03), and Kep (OR 4.90; 95% CI 1.25-19.18; P = 0.02) were independent predictors of PMI in cervical cancer patients. The combined parameter incorporating these parameters demonstrated the highest performance in predicting PMI, yielding an area under the curve of 0.906, sensitivity of 84.4%, and specificity of 86.3%. CONCLUSION: The proposed combined parameter exhibited favorable performance in identifying PMI in cervical cancer patients.

8.
Adv Sci (Weinh) ; : e2310096, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696663

ABSTRACT

Combinatorial optimization (CO) has a broad range of applications in various fields, including operations research, computer science, and artificial intelligence. However, many of these problems are classified as nondeterministic polynomial-time (NP)-complete or NP-hard problems, which are known for their computational complexity and cannot be solved in polynomial time on traditional digital computers. To address this challenge, continuous-time Ising machine solvers have been developed, utilizing different physical principles to map CO problems to ground state finding. However, most Ising machine prototypes operate at speeds comparable to digital hardware and rely on binarizing node states, resulting in increased system complexity and further limiting operating speed. To tackle these issues, a novel device-algorithm co-design method is proposed for fast sub-optimal solution finding with low hardware complexity. On the device side, a piezoelectric lithium niobate (LiNbO3) microelectromechanical system (MEMS) oscillator network-based Ising machine without second-harmonic injection locking (SHIL) is devised to solve Max-cut and graph coloring problems. The LiNbO3 oscillator operates at speeds greater than 9 GHz, making it one of the fastest oscillatory Ising machines. System-wise, an innovative grouping method is used that achieves a performance guarantee of 0.878 for Max-cut and 0.658 for graph coloring problems, which is comparable to Ising machines that utilize binarization.

9.
Small ; : e2400985, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693073

ABSTRACT

Ionic liquids have been widely used to improve the efficiency and stability of perovskite solar cells (PSCs), and are generally believed to passivate defects on the grain boundaries of perovskites. However, few studies have focused on the relevant effects of ionic liquids on intragrain defects in perovskites which have been shown to be critical for the performance of PSCs. In this work, the effect of ionic liquid 1-hexyl-3-methylimidazolium iodide (HMII) on intragrain defects of formamidinium lead iodide (FAPbI3) perovskite is investigated. Abundant {111}c intragrain planar defects in pure FAPbI3 grains are found to be significantly reduced by the addition of the ionic liquid HMII, shown by using ultra-low-dose selected area electron diffraction. As a result, longer charge carrier lifetimes, higher photoluminescence quantum yield, better charge carrier transport properties, lower Urbach energy, and current-voltage hysteresis are achieved, and the champion power conversion efficiency of 24.09% is demonstrated. These observations suggest that ionic liquids significantly improve device performance resulting from the elimination of {111}c intragrain planar defects.

10.
Int Urogynecol J ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695902

ABSTRACT

INTRODUCTION AND HYPOTHESIS: The potential predictors of pelvic floor reconstruction surgery hypothermia remain unclear. This prospective cohort study was aimed at identifying these predictors and evaluating the outcomes associated with perioperative hypothermia. METHODS: Elderly patients undergoing pelvic floor reconstruction surgery were consecutively enrolled from April 2023 to September 2023. Perioperative temperature was measured at preoperative (T1), every 15 min after the start of anesthesia (T2), and 15 min postoperative (T3) using a temperature probe. Perioperative hypothermia was defined as a core temperature below 36°C at any point during the procedure. Multivariate logistic regression analysis was conducted to determine factors associated with perioperative hypothermia. RESULTS: A total of 229 patients were included in the study, with 50.7% experiencing hypothermia. Multivariate analysis revealed that the surgical method involving pelvic floor combined with laparoscopy, preoperative temperature < 36.5°C, anesthesia duration ≥ 120 min, and the high levels of anxiety were significantly associated with perioperative hypothermia. The predictive value of the multivariate model was 0.767 (95% CI, 0.706 to 0.828). CONCLUSIONS: This observational prospective study identified several predictive factors for perioperative hypothermia in elderly patients during pelvic floor reconstruction surgery. Strategies aimed at preventing perioperative hypothermia should target these factors. Further studies are required to assess the effectiveness of these strategies, specifically in elderly patients undergoing pelvic floor reconstruction surgery.

11.
Small ; : e2402661, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813727

ABSTRACT

Traffic lights play vital roles in urban traffic management systems, providing clear directional guidance for vehicles and pedestrians while ensuring traffic safety. However, the vast quantity of traffic lights widely distributed in the transportation system aggravates energy consumption. Here, a self-powered traffic light system is proposed through wind energy harvesting based on a high-performance fur-brush dish triboelectric nanogenerator (FD-TENG). The FD-TENG harvests wind energy to power the traffic light system continuously without needing an external power supply. Natural rabbit furs are applied to dish structures, due to their outstanding characteristics of shallow wear, high performance, and resistance to humidity. Also, the grid pattern of the dish structure significantly impacts the TENG outputs. Additionally, the internal electric field and the influences of mechanical and structural parameters on the outputs are analyzed by finite element simulations. After optimization, the FD-TENG can achieve a peak power density of 3.275 W m-3. The portable and miniature features of FD-TENG make it suitable for other natural environment systems such as forests, oceans, and mountains, besides the traffic light systems. This study presents a viable strategy for self-powered traffic lights, establishing a basis for efficient environmental energy harvesting toward big data and Internet of Things applications.

13.
Nat Commun ; 15(1): 4402, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782924

ABSTRACT

Endowing the widely-used synthetic polymer nylon with high-performance organic room-temperature phosphorescence would produce advanced materials with a great potential for applications in daily life and industry. One key to achieving this goal is to find a suitable organic luminophore that can access the triplet excited state with the aid of the nylon matrix by controlling the matrix-luminophore interaction. Herein we report highly-efficient room-temperature phosphorescence nylons by doping cyano-substituted benzimidazole derivatives into the nylon 6 matrix. These homogeneously doped materials show ultralong phosphorescence lifetimes of up to 1.5 s and high phosphorescence quantum efficiency of up to 48.3% at the same time. The synergistic effect of the homogeneous dopant distribution via hydrogen bonding interaction, the rigid environment of the matrix polymer, and the potential energy transfer between doped luminophores and nylon is important for achieving the high-performance room-temperature phosphorescence, as supported by combined experimental and theoretical results with control compounds and various polymeric matrices. One-dimensional optical fibers are prepared from these doped room-temperature phosphorescence nylons that can transport both blue fluorescent and green afterglow photonic signals across the millimeter distance without significant optical attenuation. The potential applications of these phosphorescent materials in dual information encryption and rewritable recording are illustrated.

14.
World J Stem Cells ; 16(5): 538-550, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38817334

ABSTRACT

BACKGROUND: Thrombocytopenia 2, an autosomal dominant inherited disease characterized by moderate thrombocytopenia, predisposition to myeloid malignancies and normal platelet size and function, can be caused by 5'-untranslated region (UTR) point mutations in ankyrin repeat domain containing 26 (ANKRD26). Runt related transcription factor 1 (RUNX1) and friend leukemia integration 1 (FLI1) have been identified as negative regulators of ANKRD26. However, the positive regulators of ANKRD26 are still unknown. AIM: To prove the positive regulatory effect of GATA binding protein 2 (GATA2) on ANKRD26 transcription. METHODS: Human induced pluripotent stem cells derived from bone marrow (hiPSC-BM) and urothelium (hiPSC-U) were used to examine the ANKRD26 expression pattern in the early stage of differentiation. Then, transcriptome sequencing of these iPSCs and three public transcription factor (TF) databases (Cistrome DB, animal TFDB and ENCODE) were used to identify potential TF candidates for ANKRD26. Furthermore, overexpression and dual-luciferase reporter experiments were used to verify the regulatory effect of the candidate TFs on ANKRD26. Moreover, using the GENT2 platform, we analyzed the relationship between ANKRD26 expression and overall survival in cancer patients. RESULTS: In hiPSC-BMs and hiPSC-Us, we found that the transcription levels of ANKRD26 varied in the absence of RUNX1 and FLI1. We sequenced hiPSC-BM and hiPSC-U and identified 68 candidate TFs for ANKRD26. Together with three public TF databases, we found that GATA2 was the only candidate gene that could positively regulate ANKRD26. Using dual-luciferase reporter experiments, we showed that GATA2 directly binds to the 5'-UTR of ANKRD26 and promotes its transcription. There are two identified binding sites of GATA2 that are located 2 kb upstream of the TSS of ANKRD26. In addition, we discovered that high ANKRD26 expression is always related to a more favorable prognosis in breast and lung cancer patients. CONCLUSION: We first discovered that the transcription factor GATA2 plays a positive role in ANKRD26 transcription and identified its precise binding sites at the promoter region, and we revealed the importance of ANKRD26 in many tissue-derived cancers.

15.
Accid Anal Prev ; 203: 107636, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38776837

ABSTRACT

The visual information regarding the road environment can influence drivers' perception and judgment, often resulting in frequent speeding incidents. Identifying speeding hotspots in cities can prevent potential speeding incidents, thereby improving traffic safety levels. We propose the Dual-Branch Contextual Dynamic-Static Feature Fusion Network based on static panoramic images and dynamically changing sequence data, aiming to capture global features in the macro scene of the area and dynamically changing information in the micro view for a more accurate urban speeding hotspot area identification. For the static branch, we propose the Multi-scale Contextual Feature Aggregation Network for learning global spatial contextual association information. In the dynamic branch, we construct the Multi-view Dynamic Feature Fusion Network to capture the dynamically changing features of a scene from a continuous sequence of street view images. Additionally, we designed the Dynamic-Static Feature Correlation Fusion Structure to correlate and fuse dynamic and static features. The experimental results show that the model has good performance, and the overall recognition accuracy reaches 99.4%. The ablation experiments show that the recognition effect after the fusion of dynamic and static features is better than that of static and dynamic branches. The proposed model also shows better performance than other deep learning models. In addition, we combine image processing methods and different Class Activation Mapping (CAM) methods to extract speeding frequency visual features from the model perception results. The results show that more accurate speeding frequency features can be obtained by using LayerCAM and GradCAM-Plus for static global scenes and dynamic local sequences, respectively. In the static global scene, the speeding frequency features are mainly concentrated on the buildings and green layout on both sides of the road, while in the dynamic scene, the speeding frequency features shift with the scene changes and are mainly concentrated on the dynamically changing transition areas of greenery, roads, and surrounding buildings. The code and model used for identifying hotspots of urban traffic accidents in this study are available for access: https://github.com/gwt-ZJU/DCDSFF-Net.


Subject(s)
Accidents, Traffic , Automobile Driving , Cities , Deep Learning , Image Processing, Computer-Assisted , Neural Networks, Computer , Humans , Accidents, Traffic/prevention & control , Image Processing, Computer-Assisted/methods
16.
Clin Chem ; 70(7): 978-986, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38757262

ABSTRACT

BACKGROUND: Abuse of fentanyl and its analogs is a major contributor to the opioid overdose epidemic in the United States, but detecting and quantifying trace amounts of such drugs remains a challenge without resorting to sophisticated mass spectrometry-based methods. METHODS: A sensitive immunoassay with a sub-picogram limit of detection for fentanyl and a wide range of fentanyl analogs has been developed, using a novel high-affinity antibody fused with NanoLuc, a small-size luciferase that can emit strong and stable luminescence. When used with human urine samples, the assay has a sub-picogram limit of detection for fentanyl, with results fully concordant with LC-MS. RESULTS: When applied to clinical samples, the novel chemiluminescence immunoassay can detect low positive fentanyl missed by routine screening immunoassays, with a limit of detection of 0.8 pg/mL in human urine. When applied to environmental samples, the assay can detect levels as low as 0.25 pg fentanyl per inch2 of environment surface. Assay turnaround time is less than 1 h, with inexpensive equipment and the potential for high-throughput automation or in-field screening. CONCLUSIONS: We have established a novel assay that may have broad applications in clinical, environmental, occupational, and forensic scenarios for detection of trace amounts of fentanyl and its analogs.


Subject(s)
Fentanyl , Luminescent Measurements , Fentanyl/urine , Fentanyl/analysis , Humans , Immunoassay/methods , Luminescent Measurements/methods , Limit of Detection , Substance Abuse Detection/methods , Analgesics, Opioid/urine , Analgesics, Opioid/analysis
17.
ACS Appl Mater Interfaces ; 16(15): 19175-19183, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38573052

ABSTRACT

Inorganic lead-free perovskite nanocrystals (NCs) with broadband self-trapped exciton (STEs) emission and low toxicity have shown enormous application prospects in the field of display and lighting. However, white light-emitting diodes (WLEDs) based on a single-component material with high photoluminescence quantum yield (PLQY) remain challenging. Here, we demonstrate a novel codoping strategy by introducing Sb3+/Mn2+ ions to achieve the tuneable dual emission in lead-free perovskite Cs3InCl6 NCs. The PLQY increases to 59.64% after doping with Sb3+. The codoped Cs3InCl6 NCs exhibit efficient white light emission due to the energy transfer channel from STEs to Mn2+ ions with PLQY of 51.38%. Density functional theory (DFT) calculations have been used to verify deeply the effects of Sb3+/Mn2+ doping. WLEDs based on Sb3+/Mn2+-codoped Cs3InCl6 NCs are explored with color rendering index of 85.5 and color coordinate of (0.398, 0.445), which have been successfully applied as photodetector lighting sources. This work provides a new perspective for designing novel lead-free perovskites to achieve single-component WLEDs.

18.
Article in English | MEDLINE | ID: mdl-38581629

ABSTRACT

Recent reports show miR-449b-5p reduces liver and renal ischemia/reperfusion (I/R) injury, but its effects on hypoxia-induced cardiomyocyte injury in ischemic heart disease are still unknown. In this study, AC16 human cardiomyocytes underwent hypoxic conditions for durations of 24, 48, and 72 h. We observed that miR-449b-5p expression was significantly downregulated in hypoxic AC16 cardiomyocytes. Elevating the levels of miR-449b-5p in these cells resulted in enhanced cell survival, diminished release of LDH, and a reduction in cell apoptosis and oxidative stress using CCK-8, LDH assays, flow cytometry, TUNEL staining, and various commercial kits. Conversely, reducing miR-449b-5p levels resulted in the opposite effects. Through bioinformatics analysis and luciferase reporter assays, BCL2-like 13 (BCL2L13) was determined to be a direct target of miR-449b-5p. Inhibiting BCL2L13 greatly inhibited hypoxia-induced cell viability loss, LDH release, cell apoptosis, and excessive production of oxidative stress, whereas increasing BCL2L13 negated miR-449b-5p's protective impact in hypoxic AC16 cardiomyocytes. Additionally, miR-449b-5p elevated the levels of the proteins p-PI3K, p-AKT, and Bcl-2, while decreasing Bax expression in hypoxic AC16 cardiomyocytes by targeting BCL2L13. In summary, the research indicates that the protective effects of miR-449b-5p are facilitated through the activation of the PI3K/AKT pathway, which promotes cell survival, and by targeting BCL2L13, which inhibits apoptosis, offering a potential therapeutic strategy for ischemic heart disease by mitigating hypoxia-induced cardiomyocyte injury.

19.
Environ Int ; 187: 108677, 2024 May.
Article in English | MEDLINE | ID: mdl-38677083

ABSTRACT

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is commonly used in rubber compounds as antioxidants to protect against degradation from heat, oxygen, and ozone exposure. This practice extends the lifespan of rubber products, including tires, by preventing cracking, aging, and deterioration. However, the environmental consequences of waste generated during rubber product use, particularly the formation of 6PPD-quinone (6PPD-Q) through the reaction of 6PPD with ozone, have raised significant concerns due to their detrimental effects on ecosystems. Extensive research has revealed the widespread occurrence of 6PPD and its derivate 6PPD-Q in various environmental compartments, including air, water, and soil. The emerging substance of 6PPD-Q has been shown to pose acute mortality and long-term hazards to aquatic and terrestrial organisms at concentrations below environmentally relevant levels. Studies have demonstrated toxic effects of 6PPD-Q on a range of organisms, including zebrafish, nematodes, and mammals. These effects include neurobehavioral changes, reproductive dysfunction, and digestive damage through various exposure pathways. Mechanistic insights suggest that mitochondrial stress, DNA adduct formation, and disruption of lipid metabolism contribute to the toxicity induced by 6PPD-Q. Recent findings of 6PPD-Q in human samples, such as blood, urine, and cerebrospinal fluid, underscore the importance of further research on the public health and toxicological implications of these compounds. The distribution, fate, biological effects, and underlying mechanisms of 6PPD-Q in the environment highlight the urgent need for additional research to understand and address the environmental and health impacts of these compounds.


Subject(s)
Phenylenediamines , Rubber , Animals , Phenylenediamines/toxicity , Environmental Pollutants/toxicity , Environmental Pollutants/analysis , Humans , Environmental Monitoring
20.
Proc Natl Acad Sci U S A ; 121(16): e2318935121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588421

ABSTRACT

Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.


Subject(s)
Adipose Tissue, Brown , Glucose , Mice , Humans , Animals , Glucose/metabolism , Adipose Tissue, Brown/metabolism , Acetylation , Adipose Tissue, White/metabolism , Energy Metabolism , Obesity/genetics , Obesity/metabolism , Thermogenesis/genetics , Mice, Inbred C57BL , Basic-Leucine Zipper Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...