Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
PLoS One ; 19(4): e0299891, 2024.
Article En | MEDLINE | ID: mdl-38630782

Viruses can infect the brain in individuals with and without HIV-infection: however, the brain virome is poorly characterized. Metabolic alterations have been identified which predispose people to substance use disorder (SUD), but whether these could be triggered by viral infection of the brain is unknown. We used a target-enrichment, deep sequencing platform and bioinformatic pipeline named "ViroFind", for the unbiased characterization of DNA and RNA viruses in brain samples obtained from the National Neuro-AIDS Tissue Consortium. We analyzed fresh frozen post-mortem prefrontal cortex from 72 individuals without known viral infection of the brain, including 16 HIV+/SUD+, 20 HIV+/SUD-, 16 HIV-/SUD+, and 20 HIV-/SUD-. The average age was 52.3 y and 62.5% were males. We identified sequences from 26 viruses belonging to 11 viral taxa. These included viruses with and without known pathogenic potential or tropism to the nervous system, with sequence coverage ranging from 0.03 to 99.73% of the viral genomes. In SUD+ people, HIV-infection was associated with a higher total number of viruses, and HIV+/SUD+ compared to HIV-/SUD+ individuals had an increased frequency of Adenovirus (68.8 vs 0%; p<0.001) and Epstein-Barr virus (EBV) (43.8 vs 6.3%; p=0.037) as well as an increase in Torque Teno virus (TTV) burden. Conversely, in HIV+ people, SUD was associated with an increase in frequency of Hepatitis C virus, (25 in HIV+/SUD+ vs 0% in HIV+/SUD-; p=0.031). Finally, HIV+/SUD- compared to HIV-/SUD- individuals had an increased frequency of EBV (50 vs 0%; p<0.001) and an increase in TTV viral burden, but a decreased Adenovirus viral burden. These data demonstrate an unexpectedly high variety in the human brain virome, identifying targets for future research into the impact of these taxa on the central nervous system. ViroFind could become a valuable tool for monitoring viral dynamics in various compartments, monitoring outbreaks, and informing vaccine development.


DNA Virus Infections , Epstein-Barr Virus Infections , HIV Infections , Substance-Related Disorders , Torque teno virus , Virus Diseases , Male , Humans , Middle Aged , Female , Virome , Epstein-Barr Virus Infections/complications , DNA, Viral/genetics , Herpesvirus 4, Human/genetics , HIV Infections/epidemiology , Virus Diseases/complications , Torque teno virus/genetics , Brain , Hepacivirus/genetics , Substance-Related Disorders/complications
2.
Sleep Adv ; 5(1): zpae002, 2024.
Article En | MEDLINE | ID: mdl-38370438

Introduction: Fatigue, brain fog, and sleep disturbance are among the most common symptoms of postacute sequelae of SARS-CoV-2 infection (PASC). We sought to determine the impact of sleep disruption on cognition and quality of life in patients with neurologic manifestations of PASC (Neuro-PASC). Methods: Thirty-nine patients were recruited from Neuro-COVID-19 clinic. Mean age was 48.1 years, 71.8% were female, and 82% were never hospitalized for COVID-19. Patients were evaluated via clinical assessment, quality-of-life measures in domains of cognitive function, fatigue, sleep disturbance, anxiety, and depression, NIH Toolbox cognitive tests, and 7 days of wrist actigraphy. Results: The median number of neurologic symptoms attributed to PASC was 6, with brain fog being the most common in 89.7%. Regarding non-neurologic symptoms, 94.9% complained of fatigue and 74.4% of insomnia. Patients reported significant impairment in all quality-of-life domains and performed worse in a task of attention compared to a normative US population. Actigraphy showed Neuro-PASC patients had lower sleep efficiency, longer sleep latency (both p < 0.001), and later sleep midpoint (p = 0.039) compared to 71 age-matched healthy controls with no PASC history. Self-reported cognitive symptoms correlated with the severity of fatigue (p < 0.001), anxiety (p = 0.05), and depression (p < 0.01). Objective evidence of sleep disruption measured by wakefulness after sleep onset, sleep efficiency, and latency were associated with decreased performance in attention and processing speed. Conclusion: Prospective studies including larger populations of patients are needed to fully determine the interplay of sleep disruption on the cognitive function and quality of life of patients with PASC.

4.
Brain Behav Immun ; 114: 462-474, 2023 11.
Article En | MEDLINE | ID: mdl-37704012

Persistent symptoms of COVID-19 survivors constitute long COVID syndrome, also called post-acute sequelae of SARS-CoV-2 infection (PASC). Neurologic manifestations of PASC (Neuro-PASC) are particularly debilitating, long lasting, and poorly understood. To gain insight into the pathogenesis of PASC, we leveraged a well-characterized group of Neuro-PASC (NP) patients seen at our Neuro-COVID-19 clinic who had mild acute COVID-19 and never required hospitalization to investigate their plasma proteome. Using the SomaLogic platform, SomaScan, the plasma concentration of >7000 proteins was measured from 92 unvaccinated individuals, including 48 NP patients, 20 COVID-19 convalescents (CC) without lingering symptoms, and 24 unexposed healthy controls (HC) to interrogate underlying pathobiology and potential biomarkers of PASC. We analyzed the plasma proteome based on post-COVID-19 status, neurologic and non-neurologic symptoms, as well as subjective and objective standardized tests for changes in quality-of-life (QoL) and cognition associated with Neuro-PASC. The plasma proteome of NP patients differed from CC and HC subjects more substantially than post-COVID-19 groups (NP and CC combined) differed from HC. Proteomic differences in NP patients 3-9 months following acute COVID-19 showed alterations in inflammatory proteins and pathways relative to CC and HC subjects. Proteomic associations with Neuro-PASC symptoms of brain fog and fatigue included changes in markers of DNA repair, oxidative stress, and neutrophil degranulation. Furthermore, we discovered a correlation between NP patients lower subjective impression of recovery to pre-COVID-19 baseline with an increase in the concentration of the oxidative phosphorylation protein COX7A1, which was also associated with neurologic symptoms and fatigue, as well as impairment in QoL and cognitive dysfunction. Finally, we identified other oxidative phosphorylation-associated proteins correlating with central nervous system symptoms. Our results suggest ongoing inflammatory changes and mitochondrial involvement in Neuro-PASC and pave the way for biomarker validation for use in monitoring and development of therapeutic intervention for this debilitating condition.


COVID-19 , Mitochondrial Proteins , Humans , Post-Acute COVID-19 Syndrome , Proteome , Proteomics , Quality of Life , SARS-CoV-2 , Disease Progression , Fatigue
5.
Article En | MEDLINE | ID: mdl-37612134

BACKGROUND AND OBJECTIVES: Millions of Americans were exposed to SARS-CoV-2 early in the pandemic but could not get diagnosed with COVID-19 due to testing limitations. Many have developed a postviral syndrome (PVS) including neurologic manifestations similar to those with postacute sequelae of SARS-CoV-2 infection (Neuro-PASC). Owing to those circumstances, proof of SARS-CoV-2 infection was not required for evaluation at Northwestern Medicine's Neuro COVID-19 clinic. We sought to investigate clinical and immunologic findings suggestive of SARS-CoV-2 exposure in patients with PVS. METHODS: We measured SARS-CoV-2-specific humoral and cell-mediated immune responses against Nucleocapsid and Spike proteins in 29 patients with PVS after suspected COVID-19, 32 confirmed age-matched/sex-matched Neuro-PASC (NP) patients, and 18 unexposed healthy controls. Neurologic symptoms and signs, comorbidities, quality of life, and cognitive testing data collected during clinic visits were studied retrospectively. RESULTS: Of 29 patients with PVS, 12 (41%) had detectable humoral or cellular immune responses consistent with prior exposure to SARS-CoV-2. Of 12 PVS responders (PVS+), 75% harbored anti-Nucleocapsid and 50% harbored anti-Spike responses. Patients with PVS+ had similar neurologic symptoms as patients with NP, but clinic evaluation occurred 5.3 months later from the time of symptom onset (10.7 vs 5.4 months; p = 0.0006). Patients with PVS+ and NP had similar subjective impairments in quality of life measures including cognitive function and fatigue. Patients with PVS+ had similar results in objective cognitive measures of processing speed, attention, and executive function and better results in working memory than patients with NP. DISCUSSION: Antibody and T-cell assays showed evidence of prior SARS-CoV-2 exposure in approximately 40% of the PVS group. Three-quarters of patients with PVS+ had detectable anti-Nucleocapsid and one-half anti-Spike responses, highlighting the importance of multitargeted COVID-19 immunologic evaluation and the limitations of commercially available diagnostic tests. Despite their persistent symptoms, lack of COVID-19 diagnosis likely delayed clinical care in patients with PVS. Our data suggest that millions of Americans presenting with PVS resembling Neuro-PASC were indeed exposed to SARS-CoV-2 at the beginning of the pandemic, and they deserve the same access to care and inclusion in research studies as patients with NP with confirmed COVID-19 diagnosis.


COVID-19 , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19 Testing , Quality of Life , Retrospective Studies , Immunity
6.
Front Immunol ; 14: 1155770, 2023.
Article En | MEDLINE | ID: mdl-37313412

Introduction: Many people with long COVID symptoms suffer from debilitating neurologic post-acute sequelae of SARS-CoV-2 infection (Neuro-PASC). Although symptoms of Neuro-PASC are widely documented, it is still unclear whether PASC symptoms impact virus-specific immune responses. Therefore, we examined T cell and antibody responses to SARS-CoV-2 Nucleocapsid protein to identify activation signatures distinguishing Neuro-PASC patients from healthy COVID convalescents. Results: We report that Neuro-PASC patients exhibit distinct immunological signatures composed of elevated CD4+ T cell responses and diminished CD8+ memory T cell activation toward the C-terminal region of SARS-CoV-2 Nucleocapsid protein when examined both functionally and using TCR sequencing. CD8+ T cell production of IL-6 correlated with increased plasma IL-6 levels as well as heightened severity of neurologic symptoms, including pain. Elevated plasma immunoregulatory and reduced pro-inflammatory and antiviral response signatures were evident in Neuro-PASC patients compared with COVID convalescent controls without lasting symptoms, correlating with worse neurocognitive dysfunction. Discussion: We conclude that these data provide new insight into the impact of virus-specific cellular immunity on the pathogenesis of long COVID and pave the way for the rational design of predictive biomarkers and therapeutic interventions.


CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19 , Post-Acute COVID-19 Syndrome , Humans , COVID-19/immunology , Interleukin-6 , Post-Acute COVID-19 Syndrome/immunology , SARS-CoV-2
7.
Am J Med ; 2023 May 22.
Article En | MEDLINE | ID: mdl-37220832

BACKGROUND: Persistent multi-organ symptoms after coronavirus disease 2019 (COVID-19) have been termed "long COVID" or "post-acute sequelae of SARS-CoV-2 infection." The complexity of these clinical manifestations posed challenges early in the pandemic as different ambulatory models formed out of necessity to manage the influx of patients. Little is known about the characteristics and outcomes of patients seeking care at multidisciplinary post-COVID centers. METHODS: We performed a retrospective cohort study of patients evaluated at our multidisciplinary comprehensive COVID-19 center in Chicago, Ill, between May 2020 and February 2022. We analyzed specialty clinic utilization and clinical test results according to severity of acute COVID-19. RESULTS: We evaluated 1802 patients a median of 8 months from acute COVID-19 onset, including 350 post-hospitalization and 1452 non-hospitalized patients. Patients were seen in 2361 initial visits in 12 specialty clinics, with 1151 (48.8%) in neurology, 591 (25%) in pulmonology, and 284 (12%) in cardiology. Among the patients tested, 742/878 (85%) reported decreased quality of life, 284/553 (51%) had cognitive impairment, 195/434 (44.9%) had alteration of lung function, 249/299 (83.3%) had abnormal computed tomography chest scans, and 14/116 (12.1%) had elevated heart rate on rhythm monitoring. Frequency of cognitive impairment and pulmonary dysfunction was associated with severity of acute COVID-19. Non-hospitalized patients with positive SARS-CoV-2 testing had findings similar to those with negative or no test results. CONCLUSIONS: The experience at our multidisciplinary comprehensive COVID-19 center shows common utilization of multiple specialists by long COVID patients, who harbor frequent neurologic, pulmonary, and cardiologic abnormalities. Differences in post-hospitalization and non-hospitalized groups suggest distinct pathogenic mechanisms of long COVID in these populations.

8.
Ann Neurol ; 94(1): 146-159, 2023 07.
Article En | MEDLINE | ID: mdl-36966460

OBJECTIVE: To characterize neurologic manifestations in post-hospitalization Neuro-PASC (PNP) and non-hospitalized Neuro-PASC (NNP) patients. METHODS: Prospective study of the first 100 consecutive PNP and 500 NNP patients evaluated at a Neuro-COVID-19 clinic between 5/2020 and 8/2021. RESULTS: PNP were older than NNP patients (mean 53.9 vs 44.9 y; p < 0.0001) with a higher prevalence of pre-existing comorbidities. An average 6.8 months from onset, the main neurologic symptoms were "brain fog" (81.2%), headache (70.3%), and dizziness (49.5%) with only anosmia, dysgeusia and myalgias being more frequent in the NNP compared to the PNP group (59 vs 39%, 57.6 vs 39% and 50.4 vs 33%, all p < 0.003). Moreover, 85.8% of patients experienced fatigue. PNP more frequently had an abnormal neurologic exam than NNP patients (62.2 vs 37%, p < 0.0001). Both groups had impaired quality of life in cognitive, fatigue, sleep, anxiety, and depression domains. PNP patients performed worse on processing speed, attention, and working memory tasks than NNP patients (T-score 41.5 vs 55, 42.5 vs 47 and 45.5 vs 49, all p < 0.001) and a US normative population. NNP patients had lower results in attention task only. Subjective impression of cognitive ability correlated with cognitive test results in NNP but not in PNP patients. INTERPRETATION: PNP and NNP patients both experience persistent neurologic symptoms affecting their quality of life. However, they harbor significant differences in demographics, comorbidities, neurologic symptoms and findings, as well as pattern of cognitive dysfunction. Such differences suggest distinct etiologies of Neuro-PASC in these populations warranting targeted interventions. ANN NEUROL 2023;94:146-159.


COVID-19 , Post-Acute COVID-19 Syndrome , Humans , COVID-19/complications , Prospective Studies , Quality of Life , Fatigue/etiology
9.
Ann Clin Transl Neurol ; 9(7): 950-961, 2022 07.
Article En | MEDLINE | ID: mdl-35607826

OBJECTIVE: We characterized the evolution of neurologic symptoms and self-perceived recovery of non-hospitalized COVID-19 "long haulers" 6-9 months after their initial Neuro-COVID-19 clinic evaluation. METHODS: In this follow-up study on the first 100 patients, 50 SARS-CoV-2 laboratory-positive (SARS-CoV-2+ ), and 50 laboratory-negative (SARS-CoV-2- ), evaluated at our Neuro-COVID-19 clinic between May and November 2020, patients completed phone questionnaires on their neurologic symptoms, subjective impression of recovery and quality of life. RESULTS: Of 52 patients who completed the study (27 SARS-CoV-2+ , 25 SARS-CoV-2- ) a median 14.8 (range 11-18) months after symptom onset, mean age was 42.8 years, 73% were female, and 77% were vaccinated for SARS-CoV-2. Overall, there was no significant change in the frequency of most neurologic symptoms between first and follow-up evaluations, including "brain fog" (81 vs. 71%), numbness/tingling (69 vs. 65%), headache (67 vs. 54%), dizziness (50 vs. 54%), blurred vision (34 vs. 44%), tinnitus (33 vs. 42%), and fatigue (87 vs. 81%). However, dysgeusia and anosmia decreased overall (63 vs. 27%, 58 vs. 21%, both p < 0.001). Conversely, heart rate and blood pressure variation (35 vs. 56%, p = 0.01) and gastrointestinal symptoms (27 vs. 48%, p = 0.04) increased at follow-up. Patients reported improvements in their recovery, cognitive function, and fatigue, but quality of life measures remained lower than the US normative population (p < 0.001). SARS-CoV-2 vaccination did not have a positive or detrimental impact on cognitive function or fatigue. INTERPRETATION: Non-hospitalized COVID-19 "long haulers" continue to experience neurologic symptoms, fatigue, and compromised quality of life 14.8 months after initial infection.


COVID-19 , Adult , COVID-19 Vaccines , Fatigue/etiology , Female , Follow-Up Studies , Humans , Male , Quality of Life , SARS-CoV-2
10.
medRxiv ; 2022 Oct 21.
Article En | MEDLINE | ID: mdl-34401886

Many people experiencing long COVID syndrome, or post-acute sequelae of SARS-CoV-2 infection (PASC), suffer from debilitating neurologic symptoms (Neuro-PASC). However, whether virus-specific adaptive immunity is affected in Neuro-PASC patients remains poorly understood. We report that Neuro-PASC patients exhibit distinct immunological signatures composed of elevated humoral and cellular responses toward SARS-CoV-2 Nucleocapsid protein at an average of 6 months post-infection compared to healthy COVID convalescents. Neuro-PASC patients also had enhanced virus-specific production of IL-6 from and diminished activation of CD8+ T cells. Furthermore, the severity of cognitive deficits or quality of life disturbances in Neuro-PASC patients were associated with a reduced diversity of effector molecule expression in T cells but elevated IFN-γ production to the C-terminal domain of Nucleocapsid protein. Proteomics analysis showed enhanced plasma immunoregulatory proteins and reduced pro-inflammatory and antiviral response proteins in Neuro-PASC patients compared with healthy COVID convalescents, which were also correlated with worse neurocognitive dysfunction. These data provide new insight into the pathogenesis of long COVID syndrome and a framework for the rational design of predictive biomarkers and therapeutic interventions.

...