Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Hazard Mater ; 480: 135860, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39298955

ABSTRACT

Nanoplastic pollution has become one of the most pressing environmental issues, and its bioaccumulation in aquatic environment also causes a great difficulty in treatment. Therefore, this work investigated the microbial dynamics of mainstream anaerobic ammonia oxidizing (anammox) process to treat the wastewater containing typical nanoplastics, as well as the fate and regulation mechanism of polystyrene nanoparticles (PS-NPs) with different concentrations. The results showed that 0.1-0.5 mg L-1 of PS-NPs had no significant effect on the nitrogen removal efficiency (NRE). When the concentration of PS-NPs increased from 0.5 mg L-1 to 2 mg L-1, the NRE of R1 with PS-NPs decreased from 94.9 ± 2.3 % to 77.0 ± 1.6 %, while the control reactor R0 maintained a stable NRE. Notably, the relative abundance of Ca. Kuenenia decreased from 17.4 % to 14.8 %, and that of Ca. Brocadia slightly decreased from 5.9 % to 5.0 % in R1. In addition, PS-NPs induced oxidative stress in anammox consortia, leading to the significant increase in reactive oxygen species (ROS) and lactate dehydrogenase (LDH) as well as cell membrane damage. PS-NPs also downregulated the content of heme c and further inhibited anammox activity. Based on the molecular docking simulation and western blotting, cold shock proteins (CSPs) could bind to PS-NPs and reduce the performance of anammox processes at low temperatures.

2.
Bioresour Technol ; 388: 129766, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37730137

ABSTRACT

The treatment of pretreated printed circuit board (PCB) wastewater by anaerobic ammonium oxidation (anammox) process has been rarely reported. This study sought to investigate the performance of the anammox process during various phases of pretreated PCB wastewater treatment. The nitrogen removal efficiency (NRE) reached 90 ± 10% at a Cu2+ concentration of 2.5 mg·L-1, but declined to 22 ± 11% as the Cu2+ level increased to 10.3  mg·L-1. During phase III, there was a 38% increase in the relative abundance of Candidatus Kuenenia compared to phase I. By adjusting the substrate concentration and introducing synthetic wastewater into the reactor, the anammox performance was nearly restored to that of phase I. These findings underscore the potential of the anammox process for treating pretreated PCB wastewater and expanding its practical applications to industrial wastewater treatment.


Subject(s)
Ammonium Compounds , Wastewater , Anaerobiosis , Feasibility Studies , Denitrification , Bioreactors , Oxidation-Reduction , Nitrogen , Sewage
SELECTION OF CITATIONS
SEARCH DETAIL