Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Acta Biochim Biophys Sin (Shanghai) ; 55(12): 1884-1891, 2023 12 25.
Article in English | MEDLINE | ID: mdl-38009004

ABSTRACT

Multiple myeloma (MM) is characterized by excessive aggregation of B-cell-derived malignant plasma cells in the hematopoietic system of bone marrow. Previously, we synthesized an innovative molecule named dihydrocelastrol (DHCE) from celastrol, a triterpene purified from medicinal plant Tripterygium wilfordii. Herein, we explore the therapeutic properties and latent signal transduction mechanism of DHCE action in bortezomib (BTZ)-resistant (BTZ-R) MM cells. In this study, we first report that DHCE shows antitumor activities in vitro and in vivo and exerts stronger inhibitory effects than celastrol on BTZ-R cells. We find that DHCE inhibits BTZ-R cell viability by promoting apoptosis via extrinsic and intrinsic pathways and suppresses BTZ-R MM cell proliferation by inducing G0/G1 phase cell cycle arrest. In addition, inactivation of JAK2/STAT3 and PI3K/Akt pathways are involved in the DHCE-mediated antitumor effect. Simultaneously, DHCE acts synergistically with BTZ on BTZ-R cells. PSMB5, a molecular target of BTZ, is overexpressed in BTZ-R MM cells compared with BTZ-S MM cells and is demonstrated to be a target of STAT3. Moreover, DHCE downregulates PSMB5 overexpression in BTZ-R MM cells, which illustrates that DHCE overcomes BTZ resistance through increasing the sensitivity of BTZ in resistant MM via inhibiting STAT3-dependent PSMB5 regulation. Overall, our findings imply that DHCE may become a potential therapeutic option that warrants clinical evaluation for BTZ-R MM.


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Humans , Bortezomib/pharmacology , Bortezomib/metabolism , Bortezomib/therapeutic use , Multiple Myeloma/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Drug Resistance, Neoplasm , Cell Line, Tumor , Apoptosis , Cell Proliferation , Proteasome Endopeptidase Complex/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
2.
Environ Pollut ; 331(Pt 2): 121831, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37209898

ABSTRACT

Antibiotics have been widely used in animal husbandry, which leads to high risk of food-borne transfer of antibiotic resistance genes (ARGs). The present study investigated the distribution of ß-lactamase resistance genes (ß-RGs) on dairy farm in the Songnen Plain of western Heilongjiang Province, China, to provide mechanistic insights into food-borne transmission of ß-RGs through "meal-to-milk" chain under practically relevant circumstances. The results demonstrated that the abundance of ß-RGs (91%) was much higher than that of other ARGs in the livestock farms. The blaTEM exhibited the content as high as 94.55% among all ARGs, and higher than 98% blaTEM was detected in meal, water and milk sample. The metagenomic taxonomy analysis indicated that the blaTEM should be carried by tnpA-04 (7.04%) and tnpA-03 (1.48%) hosted in Pseudomonas genus (15.36%) and Pantoea (29.02%) genus. Both tnpA-04 and tnpA-03 in the milk sample were identified to be the key mobile genetic elements (MGEs) responsible for transferring blaTEM along the "meal-manure-soil-surface water-milk" chain. The ARGs transfer across ecological boundaries underscored the need to evaluate potential dissemination of high-risk Proteobacteria and Bacteroidetes carried by humans and animals. They were capable of producing expanded-spectrum ß-lactamases (ESBLs) and destroying commonly used antibiotics, leading to possible risk of food-borne horizontal transmission of ARGs. This study not only has important environmental implications for identifying the pathway for ARGs transfer, but also highlights the demand for appropriate policy toward safe regulation of dairy farm and husbandry products.


Subject(s)
Genes, Bacterial , Milk , Animals , Humans , Farms , Milk/chemistry , Manure/analysis , beta-Lactam Resistance , Anti-Bacterial Agents/analysis
3.
Natl Sci Rev ; 10(12): nwad222, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38239560

ABSTRACT

Neuroimmune connections have been revealed to play a central role in neurodegenerative diseases (NDs). However, the mechanisms that link the central nervous system (CNS) and peripheral immune cells are still mostly unknown. We recently found that specific ablation of the Arf1 gene in hindbrain and spinal cord neurons promoted NDs through activating the NLRP3 inflammasome in microglia via peroxided lipids and adenosine triphosphate (ATP) releasing. Here, we demonstrate that IL-1ß with elevated chemokines in the neuronal Arf1-ablated mouse hindbrain and spinal cord recruited and activated γδ T cells in meninges. The activated γδ T cells then secreted IFN-γ that entered into parenchyma to activate the microglia-A1 astrocyte-C3-neuronal C3aR neurotoxic pathway. Remarkably, the neurodegenerative phenotypes of the neuronal Arf1-ablated mice were strongly ameliorated by IFN-γ or C3 knockout. Finally, we show that the Arf1-reduction-induced neuroimmune-IFN-γ-gliosis pathway exists in human NDs, particularly in amyotrophic lateral sclerosis and multiple sclerosis. Together, our results uncover a previously unknown mechanism that links the CNS and peripheral immune cells to promote neurodegeneration.

4.
Neoplasia ; 24(1): 50-61, 2022 01.
Article in English | MEDLINE | ID: mdl-34890905

ABSTRACT

Diffuse large B cell lymphoma (DLBCL) is a clinical and genetically heterogeneous lymphoid malignancy. Although R-CHOP (rituximab plus cyclophosphamide, vincristine, doxorubicin, and prednisone) treatment can improve the survival rate of patients with DLBCL, more than 30% of patients exhibit treatment failure, relapse, or refractory disease. Therefore, novel drugs or targeted therapies are needed to improve the survival of patients with DLBCL. The compound DCZ0014 is a novel chemical similar to berberine. In this study, we found that DCZ0014 significantly inhibited the proliferation and activity of DLBCL cells, and induced cell apoptosis. Following treatment with DCZ0014, DLBCL cells accumulated in G0/G1-phase of the cell cycle and showed decreased mitochondrial membrane potential. Additionally, DCZ0014 inhibited DNA synthesis, enhanced DNA damage in DLBCL cells, as well as inhibited Lyn/Syk in B cell receptor signaling pathway. Further experiments demonstrated that DCZ0014 did not significantly affect peripheral blood mononuclear cells. Tumor xenograft model showed that DCZ0014 not only inhibited tumor growth but also extended the survival time of mice. Thus, DCZ0014 showed potential for clinical application in the treatment of patients with DLBCL.


Subject(s)
Antineoplastic Agents/pharmacology , Lymphoma, Large B-Cell, Diffuse/metabolism , Receptors, Antigen, B-Cell/metabolism , Signal Transduction/drug effects , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , DNA Damage/drug effects , DNA Replication , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/etiology , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Xenograft Model Antitumor Assays
5.
Cell Rep ; 30(8): 2614-2626.e2, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32101740

ABSTRACT

Synapses are fundamental to the normal function of the nervous system. Glia play a pivotal role in regulating synaptic formation. However, how presynaptic neurons assemble synaptic structure in response to the glial signals remains largely unexplored. To address this question, we use cima-1 mutant C. elegans as an in vivo model, in which the astrocyte-like VCSC glial processes ectopically reach an asynaptic neurite region and promote presynaptic formation there. Through an RNAi screen, we find that the Rho GTPase CDC-42 and IQGAP PES-7 are required in presynaptic neurons for VCSC glia-induced presynaptic formation. In addition, we find that cdc-42 and pes-7 are also required for normal synaptogenesis during postembryonic developmental stages. PES-7 activated by CDC-42 promotes presynaptic formation, most likely through regulating F-actin assembly. Given the evolutionary conservation of CDC-42 and IQGAPs, we speculate that our findings in C. elegans apply to vertebrates.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Cytoskeletal Proteins/metabolism , Neurogenesis , Neuroglia/metabolism , Synapses/metabolism , ras GTPase-Activating Proteins/metabolism , Actins/metabolism , Animals , Caenorhabditis elegans/embryology , Caenorhabditis elegans Proteins/chemistry , Cell Cycle Proteins/metabolism , Cytoskeletal Proteins/chemistry , Embryo, Nonmammalian/metabolism , GTP-Binding Proteins/metabolism , Mutation/genetics , Presynaptic Terminals/metabolism , Protein Domains , Signal Transduction
6.
Oncotarget ; 8(38): 64358-64372, 2017 Sep 08.
Article in English | MEDLINE | ID: mdl-28969076

ABSTRACT

We performed a pooled analysis of the efficacy of serum neuron-specific enolase (NSE) levels for early detection of small cell lung cancer (SCLC) in patients with benign lung diseases and healthy individuals. Comprehensive searches of several databases through September 2016 were conducted. The quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Ultimately, 33 studies containing 9546 samples were included in the review. Pooled sensitivity of NSE for detecting SCLC was 0.688 (95%CI: 0.627-0.743), specificity was 0.921 (95%CI: 0.890-0.944), positive likelihood ratio was 8.744 (95%CI: 6.308-12.121), negative likelihood ratio was 0.339 (95%CI: 0.283- 0.405), diagnostic odds ratio was 25.827 (95%CI: 17.490- 38.136) and area under the curve was 0.88 (95%CI: 0.85- 0.91). Meta-regression indicated that study region was a source of heterogeneity in the sensitivity and joint models, while cut-off level was a source in the joint model. Subgroup analysis showed that enzyme linked immunosorbent assays had the highest sensitivity and radioimmunoassay assays had the highest specificity. The diagnostic performance was better in Europe [sensitivity: 0.740 (95%CI: 0.676-0.795), specificity: 0.932 (95%CI: 0.904-0.953)] than in Asia [sensitivity: 0.590 (95%CI: 0.496- 0.678), specificity: 0.901 (95%CI: 0.819-0.948)]. In Europe, 25 ng/ml is likely the most suitable NSE cut-off level. NSE thus has high diagnostic efficacy when screening for SCLC, though the efficacy differs depending on study region, assay method and cut-off level. In the clinic, NSE measurements should be considered along with clinical symptoms, image results and histopathology.

SELECTION OF CITATIONS
SEARCH DETAIL