Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Water Res X ; 25: 100251, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39297053

ABSTRACT

Freshwater biodiversity is increasingly threatened by dams and many other anthropogenic stressors, yet our understanding of the complex responses of different biotas and their multiple facets remains limited. Here, we present a multi-faceted and integrated-indices approach to assess the differential responses of freshwater biodiversity to multiple stressors in the Yangtze River, the third longest and most dam-densely river in the world. By combining individual biodiversity indices of phytoplankton, zooplankton, periphyton, macroinvertebrates, and fish with a novel integrated aquatic biodiversity index (IABI), we disentangled the effects of hydrology, water quality, land use, and natural factors on both α and ß diversity facets in taxonomic, functional, and phylogenetic dimensions. Our results revealed that phytoplankton and fish species and functional richness increased longitudinally, while fish taxonomic and phylogenetic ß diversity increased but phytoplankton and macroinvertebrate ß diversity remained unchanged. Hydrology and water quality emerged as the key drivers of all individual biodiversity indices, followed by land use and natural factors, with fish and phytoplankton showed the strongest responses. Importantly, we found that natural, land use, and hydrological factors indirectly affected biodiversity by altering water quality, which in turn directly influenced taxonomic and phylogenetic IABIs. Our findings highlight the complex interplay of multiple stressors in shaping freshwater biodiversity and underscore the importance of considering both individual and integrated indices for effective conservation and management. We propose that our multi-faceted and integrated-indices approach can be applied to other large, dam-modified river basins globally.

2.
Front Microbiol ; 15: 1394745, 2024.
Article in English | MEDLINE | ID: mdl-39268538

ABSTRACT

Cetaceans play a crucial role in marine ecosystems; however, research on their gastrointestinal microbiota remains limited due to sampling constraints. In this study, we collected hindgut samples from 12 stranded cetaceans and performed 16S rRNA gene amplicon sequencing to investigate microbial composition and functional potentials. Analysis of ZOTUs profiles revealed that the phyla Firmicutes, Proteobacteria, and Bacteroidetes dominated all hindgut samples. However, unique microbial profiles were observed among different cetacean species, with significant separation of gut microbiota communities according to biological evolutionary lineages. Different genera that contain pathogens were observed distinguishing delphinids from physeteroids/ziphiids. Delphinid samples exhibited higher abundances of Vibrio, Escherichia, and Paeniclostridium, whereas physeteroid and ziphiid samples showed higher abundances of Pseudomonas, Enterococcus, and Intestinimonas. Functional analysis indicated convergence in the gut microbiota among all cetaceans, with shared bacterial infection pathways across hindgut samples. In addition, a comparison of the gastrointestinal microbial composition between a stranded short-finned pilot whale (Globicephala macrorhynchus) and a stranded rough-toothed dolphin (Steno bredanensis) using 16S rRNA gene sequencing revealed distinct microbial community structures and functional capacities. To the best of our knowledge, this study represents the first report on the gastrointestinal microbiota of the pantropical spotted dolphin (Stenella attenuata), Blainville's beaked whale (Mesoplodon densirostris), and rough-toothed dolphin, with various comparisons conducted among different cetacean species. Our findings enhance the understanding of microbial composition and diversity in cetacean gastrointestinal microbiota, providing new insights into co-evolution and complex interactions between cetacean microbes and hosts.

3.
Environ Sci Ecotechnol ; 21: 100434, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38989258

ABSTRACT

Lake ecosystems confront escalating challenges to their stability and resilience, most intuitively leading to biodiversity loss, necessitating effective preservation strategies to safeguard aquatic environments. However, the complexity of ecological processes governing lake biodiversity under multi-stressor interactions remains an ongoing concern, primarily due to insufficient long-term bioindicator data, particularly concerning macroinvertebrate biodiversity. Here we utilize a unique, continuous, and in situ biomonitoring dataset spanning from 2011 to 2019 to investigate the spatio-temporal variation of macroinvertebrate communities. We assess the impact of four crucial environmental parameters on Lake Dongting and Lake Taihu, i.e., water quality, hydrology, climate change, and land use. These two systems are representative of lakes with Yangtze-connected and disconnected subtropical floodplains in China. We find an alarming trend of declining taxonomic and functional diversities among macroinvertebrate communities despite improvements in water quality. Primary contributing factors to this decline include persistent anthropogenic pressures, particularly alterations in human land use around the lakes, including intensified nutrient loads and reduced habitat heterogeneity. Notably, river-lake connectivity is pivotal in shaping differential responses to multiple stressors. Our results highlight a strong correlation between biodiversity alterations and land use within a 2-5 km radius and 0.05-2.5 km from the shorelines of Lakes Dongting and Taihu, respectively. These findings highlight the importance of implementing land buffer zones with specific spatial scales to enhance taxonomic and functional diversity, securing essential ecosystem services and enhancing the resilience of crucial lake ecosystems.

4.
Nanomaterials (Basel) ; 14(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38921917

ABSTRACT

The hexagonal ferrite h-YbFeO3 grown on YSZ(111) by pulsed laser deposition is foreseen as a promising single multiferroic candidate where ferroelectricity and antiferromagnetism coexist for future applications at low temperatures. We studied in detail the microstructure as well as the temperature dependence of the magnetic properties of the devices by comparing the heterostructures grown directly on YSZ(111) (i.e., YbPt_Th0nm) with h-YbFeO3 films deposited on substrates buffered with platinum Pt/YSZ(111) and in dependence on the Pt underlayer film thickness (i.e., YbPt_Th10nm, YbPt_Th40nm, YbPt_Th55nm, and YbPt_Th70nm). The goal was to deeply understand the importance of the crystal quality and morphology of the Pt underlayer for the h-YbFeO3 layer crystal quality, surface morphology, and the resulting physical properties. We demonstrate the relevance of homogeneity, continuity, and hillock formation of the Pt layer for the h-YbFeO3 microstructure in terms of crystal structure, mosaicity, grain boundaries, and defect distribution. The findings of transmission electron microscopy and X-ray diffraction reciprocal space mapping characterization enable us to conclude that an optimum film thickness for the Pt bottom electrode is ThPt = 70 nm, which improves the crystal quality of h-YbFeO3 films grown on Pt-buffered YSZ(111) in comparison with h-YbFeO3 films grown on YSZ(111) (i.e., YbPt_Th0nm). The latter shows a disturbance in the crystal structure, in the up-and-down atomic arrangement of the ferroelectric domains, as well as in the Yb-Fe exchange interactions. Therefore, an enhancement in the remanent and in the total magnetization was obtained at low temperatures below 50 K for h-YbFeO3 films deposited on Pt-buffered substrates Pt/YSZ(111) when the Pt underlayer reached ThPt = 70 nm.

5.
Environ Res ; 255: 119174, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763284

ABSTRACT

In near-natural basins, zooplankton are key hubs for maintaining aquatic food webs and organic matter cycles. However, the spatial patterns and drivers of zooplankton in streams are poorly understood. This study registered 165 species of zooplankton from 147 sampling sites (Protozoa, Rotifers, Cladocera and Copepods), integrating multiple dimensions (i.e., taxonomic, functional, and phylogenetic) and components (i.e., total, turnover, and nestedness) of α and ß diversity. This study aims to reveal spatial patterns, mechanisms, correlations, and relative contribution of abiotic factors (i.e., local environment, geo-climatic, land use, and spatial factors) through spatial interpolation (ordinary kriging), mantel test, and variance partitioning analysis (VPA). The study found that α diversity is concentrated in the north, while ß diversity is more in the west, which may be affected by typical habitat, hydrological dynamics and underlying mechanisms. Taxonomic and phylogenetic ß diversity is dominated by turnover, and metacommunity heterogeneity is the result of substitution of species and phylogeny along environmental spatial gradients. Taxonomic and phylogenetic ß diversity were strongly correlated (r from 0.91 to 0.95), mainly explained by historical/spatial isolation processes, community composition, generation time, and reproductive characteristics, and this correlation provides surrogate information for freshwater conservation priorities. In addition, spatial factors affect functional and phylogenetic α diversity (26%, 28%), and environmental filtering and spatial processes combine to drive taxonomic α diversity (10%) and phylogenetic ß diversity (11%). Studies suggest that spatial factors are key to controlling the community structure of zooplankton assemblages in near-natural streams, and that the relative role of local environments may depend on the dispersal capacity of species. In terms of diversity conservation, sites with high variation in uniqueness should be protected (i) with a focus on the western part of the thousand islands lake catchment and (ii) increasing effective dispersal between communities to facilitate genetic and food chain transmission.


Subject(s)
Biodiversity , Rivers , Zooplankton , Animals , Zooplankton/classification , Phylogeny , Ecosystem
6.
Ecotoxicol Environ Saf ; 279: 116517, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38805830

ABSTRACT

With increasing urbanization and rapid industrialization, more and more environmental problems have arisen. Phthalates (PAEs) are the foremost and most widespread plasticizers and are readily emitted from these manufactured products into the environment. PAEs act as endocrine-disrupting chemicals (EDCs) and can have serious impacts on aquatic organisms as well as human health. In this study, the water quality criteria (WQC) of five PAEs (dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP)) for freshwater aquatic organisms were developed using a species sensitivity distribution (SSD) and a toxicity percentage ranking (TPR) approach. The results showed that long-term water quality criteria (LWQC) of PAEs using the SSD method could be 13.7, 11.1, 2.8, 7.8, and 0.53 µg/L, respectively. Criteria continuous concentrations (CCC) of PAEs were derived using the TPR method and determined to be 28.4, 13.1, 1.3, 2.5, and 1.6 µg/L, respectively. The five PAEs are commonly measured in China surface waters at concentrations between ng/L and µg/L. DBP, DEHP, and di-n-octyl phthalate (DnOP) were the most frequently detected PAEs, with occurrence rates ranging from 67% to 100%. The ecological risk assessment results of PAEs showed a decreasing order of risk at the national level, DEHP, DBP, DMP, DEP, DnOP. The results of this study will be of great benefit to China and other countries in revising water quality standards for the conservation of aquatic species.


Subject(s)
Environmental Monitoring , Fresh Water , Phthalic Acids , Plasticizers , Water Pollutants, Chemical , Water Quality , Phthalic Acids/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Water Quality/standards , Fresh Water/chemistry , Environmental Monitoring/methods , Plasticizers/analysis , Plasticizers/toxicity , Endocrine Disruptors/analysis , Endocrine Disruptors/toxicity , Aquatic Organisms/drug effects , Esters , China , Animals , Dibutyl Phthalate/toxicity
7.
Environ Int ; 188: 108745, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754244

ABSTRACT

One of the fundamental objectives in ecology is to investigate the ecological processes and associated factors governing the abundance and spatial distribution patterns of biodiversity. However, the reaction of biological communities to environmental degradation remains relatively unknown, even for ecologically crucial communities like macroinvertebrates in aquatic ecosystems. Here, we sampled 117 locations to quantify relative contributions of geographical and environmental factors, including water quality, land use, climate, and hydrological factors, to determine the absolute and relative compositions of macroinvertebrate communities and their spatial distribution in the Yellow River Basin (YRB), the sixth-longest river system on Earth. We assessed relative roles of species sorting and dispersal in determining macroinvertebrate community structure along YRB. Our results demonstrated that alpha and beta diversity indices showed an increase from the up- to low-reaches of YRB. The middle and low-reaches exhibited elevated species diversity and both regions exhibited relatively stable community compositions. The biodiversity of macroinvertebrates was influenced by a combination of geographical factors and environmental variables, with environmental factors predominantly serving as the principal determinants. Results of multiple linear regression and variance decomposition showed that the effect of environmental factors was approximately three times greater than that of spatial factors. These findings provide support for the hypothesis that species sorting, driven by environmental gradients, plays a significant role in shaping the community structure of macroinvertebrates in running water ecosystems at the basin scales. Moreover, the factors contributing to substantial shifts in biodiversity across different segments of YRB indicate that distinct river sections have been influenced by varying stressors, with downstream areas being more susceptible to the impacts of water pollution and urbanization resulting from human activities.


Subject(s)
Biodiversity , Invertebrates , Rivers , Rivers/chemistry , Animals , Invertebrates/classification , Invertebrates/physiology , China , Ecosystem , Environmental Monitoring , Water Quality
8.
Environ Int ; 188: 108747, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761427

ABSTRACT

Liquid crystal monomers (LCMs) are the raw material for liquid crystal displays, and their use is steadily increasing in electronic products. Recently, LCMs have been reported to be novel endocrine disrupting chemicals, however, the mechanisms underlying their potential for thyroid hormone disruption and visual toxicity are not well understood. In this study, six widely used fluorinated LCMs (FLCMs) were selected to determine putative mechanisms underlying FLCM-induced toxicity to the zebrafish thyroid and visual systems. Exposure to FLCMs caused damage to retinal structures and reduced cell density of ganglion cell layer, inner nuclear layer, and photoreceptor layer approximately 12.6-46.1%. Exposure to FLCMs also disrupted thyroid hormone levels and perturbed the hypothalamic-pituitary-thyroid axis by affecting key enzymes and protein in zebrafish larvae. A thyroid hormone-dependent GH3 cell viability assay supported the hypothesis that FLCMs act as thyroid hormone disrupting chemicals. It was also determined that FLCMs containing aliphatic ring structures may have a higher potential for T3 antagonism compared to FLCMs without an aliphatic ring. Molecular docking in silico suggested that FLCMs may affect biological functions of thyroxine binding globulin, membrane receptor integrin, and thyroid receptor beta. Lastly, the visual motor response of zebrafish in red- and green-light was significantly inhibited following exposure to FLCMs. Taken together, we demonstrate that FLCMs can act as thyroid hormone disruptors to induce visual dysfunction in zebrafish via several molecular mechanisms.


Subject(s)
Endocrine Disruptors , Larva , Liquid Crystals , Thyroid Hormones , Zebrafish , Animals , Liquid Crystals/chemistry , Thyroid Hormones/metabolism , Larva/drug effects , Endocrine Disruptors/toxicity , Signal Transduction/drug effects , Molecular Docking Simulation
9.
bioRxiv ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38766211

ABSTRACT

Binding of autoantibodies to keratinocyte surface antigens, primarily desmoglein 3 (Dsg3) of the desmosomal complex, leads to the dissociation of cell-cell adhesion in the blistering disorder pemphigus vulgaris (PV). After the initial disassembly of desmosomes, cell-cell adhesions actively remodel in association with the cytoskeleton and focal adhesions. Growing evidence highlights the role of adhesion mechanics and mechanotransduction at cell-cell adhesions in this remodeling process, as their active participation may direct autoimmune pathogenicity. However, a large part of the biophysical transformations after antibody binding remains underexplored. Specifically, it is unclear how tension in desmosomes and cell-cell adhesions changes in response to antibodies, and how the altered tensional states translate to cellular responses. Here, we showed a tension loss at Dsg3 using fluorescence resonance energy transfer (FRET)-based tension sensors, a tension loss at the entire cell-cell adhesion, and a potentially compensatory increase in junctional traction force at cell-extracellular matrix adhesions after PV antibody binding. Further, our data indicate that this tension loss is mediated by the inhibition of RhoA at cell-cell contacts, and the extent of RhoA inhibition may be crucial in determining the severity of pathogenicity among different PV antibodies. More importantly, this tension loss can be partially restored by altering actomyosin based cell contractility. Collectively, these findings provide previously unattainable details in our understanding of the mechanisms that govern cell-cell interactions under physiological and autoimmune conditions, which may open the window to entirely new therapeutics aimed at restoring physiological balance to tension dynamics that regulates the maintenance of cell-cell adhesion.

10.
J Hazard Mater ; 472: 134519, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38733790

ABSTRACT

Emerging contaminants (ECs) are increasingly recognized as a global threat to biodiversity and ecosystem health. However, the cumulative risks posed by ECs to aquatic organisms and ecosystems, as well as the influence of anthropogenic activities and natural factors on these risks, remain poorly understood. This study assessed the mixed risks of ECs in Dongting Lake, a Ramsar Convention-classified Typically Changing Wetland, to elucidate the major EC classes, key risk drivers, and magnitude of anthropogenic and natural impacts. Results revealed that ECs pose non-negligible acute (30% probability) and chronic (70% probability) mixed risks to aquatic organisms in the freshwater lake ecosystem, with imidacloprid identified as the primary pollutant stressor. Redundancy analysis (RDA) and structural equation modeling (SEM) indicated that cropland and precipitation were major drivers of EC contamination levels and ecological risk. Cropland was positively associated with EC concentrations, while precipitation exhibited a dilution effect. These findings provide critical insights into the ecological risk status and key risk drivers in a typical freshwater lake ecosystem, offering data-driven support for the control and management of ECs in China.


Subject(s)
Lakes , Water Pollutants, Chemical , China , Water Pollutants, Chemical/analysis , Risk Assessment , Rivers/chemistry , Environmental Monitoring , Neonicotinoids/analysis , Neonicotinoids/toxicity , Ecosystem , Nitro Compounds/analysis , Aquatic Organisms
11.
BMC Surg ; 24(1): 162, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762739

ABSTRACT

OBJECTIVES: To compare the efficacy of nadroparin and fondaparinux sodium for prevention of deep vein thromboembolism (DVT) in lower extremities after total hip arthroplasty (THA) and total knee arthroplasty (TKA). METHODS: A total of 592 patients were enrolled in the study. Clinical data of patients who underwent total hip arthroplasty (THA) and total knee arthroplasty (TKA) in our hospital from December 2021 to September 2022 were retrospectively collected, which mainly included patients' general information, surgery-related information, and DVT-related information. The patients were categorized into the nadroparin group(n = 278) and the fondaparinux sodium group(n = 314) according to the types of anticoagulants used. Anticoagulant therapy began 12-24 h after operation and continued until discharge. DVT prevalence between two groups was compared. The Statistical Package for Social Sciences (SPSS) software version 25 (SPSS, Armonk, NY, USA) was used for statistical analysis. RESULTS: The prevalence of DVT in the nadroparin group and the fondaparinux sodium group was 8.3% (23/278) and 15.0% (47/314), respectively(p = 0.012). Statistical analysis showed that nadroparin group showed a lower prevalence of thrombosis than fondaparinux group (OR = 1.952, P = 0.012). Subgroup analyses showed that nadroparin group had a lower prevalence of DVT than fondaparinux group in some special patients groups such as female patients (OR = 2.258, P = 0.007), patients who are 65-79 years old (OR = 2.796, P = 0.004), patients with hypertension (OR = 2.237, P = 0.042), patients who underwent TKA (OR = 2.091, P = 0.011), and patients who underwent combined spinal-epidural anesthesia (OR = 2.490, P = 0.003) (P < 0.05). CONCLUSION: Nadroparin may have an advantage over fondaparinux sodium in preventing DVT in lower extremities after THA and TKA.


Subject(s)
Anticoagulants , Arthroplasty, Replacement, Hip , Arthroplasty, Replacement, Knee , Fondaparinux , Nadroparin , Postoperative Complications , Venous Thromboembolism , Humans , Fondaparinux/therapeutic use , Female , Male , Retrospective Studies , Arthroplasty, Replacement, Hip/adverse effects , Arthroplasty, Replacement, Knee/adverse effects , Nadroparin/therapeutic use , Nadroparin/administration & dosage , Middle Aged , Venous Thromboembolism/prevention & control , Venous Thromboembolism/etiology , Venous Thromboembolism/epidemiology , Aged , Anticoagulants/therapeutic use , Anticoagulants/administration & dosage , Postoperative Complications/prevention & control , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Lower Extremity/blood supply , Lower Extremity/surgery , Treatment Outcome
12.
Surg Endosc ; 38(5): 2788-2794, 2024 May.
Article in English | MEDLINE | ID: mdl-38587640

ABSTRACT

AIM: To analyze efficacy of endoscopic lithotripsy combined with drug lithotripsy as compared with drug lithotripsy for the treatment of phytobezoars. METHODS: We collected and evaluated case records of 165 patients with phytobezoars from 2014 to 2023. And we analyzed demographic and clinical characteristics, imaging features, endoscopic features, complications of phytobezoars, and compared efficacy between endoscopic lithotripsy combined with drug lithotripsy (Group A) and drug lithotripsy (sodium bicarbonate combined with proton pump inhibitor) (Group B). RESULTS: The median age of patients with phytobezoars was 67.84 ± 4.286 years old. Abdominal pain was the most common symptom and peptic ulcers (67.5%) were the most common complication. Bezoar-induced ulcers were more frequent in the gastric angle. The success rate of phytobezoars vanishing in Group A and Group B were similar (92.3% vs. 85.1% within 48 h, 98.7% vs. 97.7% within a week), while the average hospitalization period, average hospitalization cost, second endoscopy rate, and average endoscopic operation time were significantly lower in patients in Group B than in Group A. CONCLUSION: Drug lithotripsy is the preferred effective and safe treatment option for phytobezoars. We advise that an endoscopy should be completed after 48 h for drug lithotripsy.


Subject(s)
Bezoars , Lithotripsy , Humans , Bezoars/therapy , Male , Female , Lithotripsy/methods , Aged , Middle Aged , Retrospective Studies , Proton Pump Inhibitors/therapeutic use , Proton Pump Inhibitors/administration & dosage , Treatment Outcome , Sodium Bicarbonate/administration & dosage , Sodium Bicarbonate/therapeutic use , Combined Modality Therapy , Abdominal Pain/etiology , Abdominal Pain/therapy
13.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38668205

ABSTRACT

The structure and the chemical composition of individual layers as well as of interfaces belonging to the two heterostructures M1 (BaFe12O19/YbFeO3/YSZ) and M2 (YbFeO3/BaFe12O19/YSZ) grown by pulsed laser deposition on yttria-stabilized zirconia (YSZ) substrates are deeply characterized by using a combination of methods such as high-resolution X-ray diffraction, transmission electron microscopy (TEM), and atomic-resolution scanning TEM with energy-dispersive X-ray spectroscopy. The temperature-dependent magnetic properties demonstrate two distinct heterostructures with different coercivity, anisotropy fields, and first anisotropy constants, which are related to the defect concentrations within the individual layers and to the degree of intermixing at the interface. The heterostructure with the stacking order BaFe12O19/YbFeO3, i.e., M1, exhibits a distinctive interface without any chemical intermixture, while an Fe-rich crystalline phase is observed in M2 both in atomic-resolution EDX maps and in mass density profiles. Additionally, M1 shows high c-axis orientation, which induces a higher anisotropy constant K1 as well as a larger coercivity due to a high number of phase boundaries. Despite the existence of a canted antiferromagnetic/ferromagnetic combination (T < 140 K), both heterostructures M1 and M2 do not reveal any detectable exchange bias at T = 50 K. Additionally, compressive residual strain on the BaM layer is found to be suppressing the ferromagnetism, thus reducing the Curie temperature (Tc) in the case of M1. These findings suggest that M1 (BaFe12O19/YbFeO3/YSZ) is suitable for magnetic storage applications.

14.
Nanomaterials (Basel) ; 14(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38668219

ABSTRACT

The morphology and crystal structure of Pt films grown by pulsed laser deposition (PLD) on yttria-stabilized zirconia (YSZ)at high temperatures Tg = 900 °C was studied for four different film thicknesses varying between 10 and 70 nm. During the subsequent growth of the capping layer, the thermal stability of the Pt was strongly influenced by the Pt film's thickness. Furthermore, these later affected the film morphology, the crystal structure and hillocks size, and distribution during subsequent growth at Tg = 900 °C for a long duration. The modifications in the morphology as well as in the structure of the Pt film without a capping layer, named also as the as-grown and encapsulated layers in the bilayer system, were examined by a combination of microscopic and scattering methods. The increase in the thickness of the deposited Pt film brought three competitive phenomena into occurrence, such as 3D-2D morphological transition, dewetting, and hillock formation. The degree of coverage, film continuity, and the crystal quality of the Pt film were significantly improved by increasing the deposition time. An optimum Pt film thickness of 70 nm was found to be suitable for obtaining a hillock-free Pt bottom electrode which also withstood the dewetting phenomena revealed during the subsequent growth of capping layers. This achievement is crucial for the deposition of functional bottom electrodes in ferroelectric and multiferroic heterostructure systems.

15.
Environ Res ; 251(Pt 1): 118614, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38462084

ABSTRACT

Organophosphate esters (OPEs) have been widely used as flame retardants and plasticizers in consumer and industrial products. They have been found to have numerous exposure hazards. Recently, several OPEs have been detected in surface waters around the world, which may pose potential ecological risks to freshwater organisms. In this study, the concentration, spatial variation, and ecological risk of 15 OPEs in the Beiyun and Yongding rivers were unprecedentedly investigated by the ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and risk quotient (RQ) method. The result showed that triethyl phosphate (TEP), tri (2-chloroisopropyl) phosphate (TCPP) were the most abundant OPEs with average concentrations of 55.53 ng/L and 42.29 ng/L, respectively. The concentrations of OPEs in the Beiyun River are higher than in the Yongding River, and their levels were higher in densely populated and industrial areas. The risk assessment showed that there was insignificant from OPEs to freshwater organisms in these rivers (RQs <0.1). The risk was higher downstream than upstream, which was related to human-intensive industrial activities downstream in the Yongding River. The ecological risk of OPEs in surface waters worldwide was estimated by joint probability curves (JPCs), and the result showed that there was a moderate risk for tri (2-chloroethyl) phosphate (TCEP), a low risk for trimethyl phosphate (TMP), and insignificant for other OPEs. In addition, the QSAR-ICE-SSD model was used to calculate the hazardous concentration for 5% (HC5). This result validated the feasibility and accuracy of this model in predicting acute data of OPEs and reducing biological experiments on the toxicity of OPEs. These results revealed the ecological risk of OPEs and provided the scientific basis for environmental managers.


Subject(s)
Environmental Monitoring , Organophosphates , Rivers , Water Pollutants, Chemical , Risk Assessment , Water Pollutants, Chemical/analysis , Organophosphates/analysis , Rivers/chemistry , Esters/analysis , China , Tandem Mass Spectrometry , Flame Retardants/analysis , Cities
16.
Environ Sci Ecotechnol ; 21: 100401, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38487363

ABSTRACT

Organophosphate esters (OPEs) are increasingly recognized as pervasive environmental contaminants, primarily from their extensive application in flame retardants and plasticizers. Despite their widespread presence, the intricacies of OPE bioaccumulation within aquatic ecosystems remain poorly understood, particularly the environmental determinants influencing their distribution and the bioaccumulation dynamics across aquatic food chains. Here we show that water temperature plays a crucial role in modulating the dispersion of OPE in the aquatic environment of Poyang Lake. We quantified OPE concentrations across various matrices, uncovering levels ranging from 0.198 to 912.622 ng L-1 in water, 0.013-493.36 ng per g dry weight (dw) in sediment, 0.026-41.92 ng per g wet weight (ww) in plankton, 0.13-2100.72 ng per g dw in benthic invertebrates, and 0.31-3956.49 ng per g dw in wild fish, highlighting a pronounced bioaccumulation gradient. Notably, the intestines emerged as the principal site for OPE absorption, displaying the highest concentrations among the seven tissues examined. Among the various OPEs, tris(chloroethyl) phosphate was distinguished by its significant bioaccumulation potential within the aquatic food web, suggesting a need for heightened scrutiny. The propensity for OPE accumulation was markedly higher in benthic invertebrates than wild fish, indicating a differential vulnerability within aquatic biota. This study lays a foundational basis for the risk assessment of OPEs as emerging contaminants and underscores the imperative to prioritize the examination of bioaccumulation effects, particularly in benthic invertebrates, to inform future environmental safeguarding strategies.

17.
PLoS One ; 19(3): e0299116, 2024.
Article in English | MEDLINE | ID: mdl-38489307

ABSTRACT

The current highway waveform guardrail recognition technology has encountered problems with low segmentation accuracy and strong noise interference. Therefore, an improved U-net semantic segmentation model is proposed to improve the efficiency of road maintenance detection. The model training is guided by mixed expansion convolution and mixed loss function, while the presence of guardrail shedding is investigated by using partial mean values of gray values in ROI region based on segmentation results, while the first-order detail coefficients of wavelet transform are applied to detect guardrail defects and deformation. It has been determined that the Miou and Dice of the improved model are improved by 8.63% and 17.67%, respectively, over the traditional model, and that the method of detecting defects in the data is more accurate than 85%. As a result of efficient detection of highway waveform guardrail, the detection process is shortened and the effectiveness of the detection is improved later on during road maintenance.


Subject(s)
Machine Learning , Recognition, Psychology , Semantics , Technology , Wavelet Analysis , Image Processing, Computer-Assisted
18.
J Hazard Mater ; 467: 133642, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38330644

ABSTRACT

Due to their endocrine-disrupting effects and the risks posed in surface waters, in particular by chronic low-dose exposure to aquatic organisms, phthalate esters (PAEs) have received significant attention. However, most assessments of risks posed by PAEs were performed at a selection level, and thus limited by empirical data on toxic effects and potencies. A quantitative structure activity relationship (QSAR) and interspecies correlation estimation (ICE) model was constructed to estimate hazardous concentrations (HCs) of selected PAEs to aquatic organisms, then they were used to conduct a multiple-level environmental risk assessment for PAEs in surface waters of China. Values of hazardous concentration for 5% of species (HC5s), based on acute lethality, estimated by use of the QSAR-ICE model were within 1.25-fold of HC5 values derived from empirical data on toxic potency, indicating that the QSAR-ICE model predicts the toxicity of these three PAEs with sufficient accuracy. The five selected PAEs may be commonly measured in China surface waters at concentrations between ng/L and µg/L. Risk quotients according to median concentrations of the five PAEs ranged from 3.24 for di(2-ethylhexhyl) phthalate (DEHP) to 4.10 × 10-3 for dimethyl phthalate (DMP). DEHP and dibutyl phthalate (DBP) had risks to the most vulnerable aquatic biota, with the frequency of exceedances of the predicted no-effect concentration (PNECs) of 75.5% and 38.0%, respectively. DEHP and DBP were identified as having "high" or "moderate" risks. Results of the joint probability curves (JPC) method indicated DEHP posed "intermediate" risk to freshwater species with a maximum risk product of 5.98%. The multiple level system introduced in this study can be used to prioritize chemicals and other new pollutant in the aquatic ecological.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Water Pollutants, Chemical , Diethylhexyl Phthalate/toxicity , Quantitative Structure-Activity Relationship , Rivers/chemistry , Esters/toxicity , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Phthalic Acids/toxicity , Dibutyl Phthalate/toxicity , Risk Assessment , China
19.
Sci Total Environ ; 912: 168757, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38008309

ABSTRACT

Liquid crystal monomers (LCMs) are widely used in liquid crystal displays (LCDs) and are proposed to be a new generation of environmentally persistent, bioaccumulative and toxic (PBT) substances that are increasingly detected in rivers and seas. However, there is a lack of in vivo data that characterize adverse responses and toxic mechanisms of LCMs on aquatic organisms. The aim of this study was to comprehensively investigate the effect of four typical LCMs on the lethality, growth, molting, and reproductive capacity of Daphnia magna (D. magna), a highly studied aquatic species in environmental toxicology. Whole body and enzymatic biomarkers (i.e., body length, chitobiase, acetylcholinesterase, antioxidant defense) were measured to assess the toxicity of LCMs. The 48 h mortality rate and observations of disrupted thorax development and inhibition of ecdysis indicate that D. magna are sensitive to LCMs exposure. Oxidative stress, impaired neurotransmission, and disruptions in molting were observed in short-term biomarker tests using LCMs. A 21 day exposure of D. magna to LCMs resulted in reduced growth, reproduction, and population intrinsic growth rate. In addition, chitobiase and 20-hydroxyecdysone, enzymes important for the molting process, were altered at 7, 14 and 21 d. This is hypothesized to be related to endocrine imbalance resulting from LCM exposure. Based on molecular docking simulations, there is evidence that LCMs bind directly to ecdysteroid receptors; this may explain the observed endocrine disrupting effects of LCMs. These data support the hypothesis that LCMs are endocrine disrupting chemicals in aquatic species, impacting the process of molting. This may subsequently lead to lower reproduction and unbalanced population dynamics.


Subject(s)
Endocrine Disruptors , Liquid Crystals , Water Pollutants, Chemical , Animals , Daphnia magna , Endocrine Disruptors/toxicity , Endocrine Disruptors/metabolism , Acetylglucosaminidase/metabolism , Acetylcholinesterase/metabolism , Molecular Docking Simulation , Daphnia , Reproduction , Water Pollutants, Chemical/metabolism
20.
Cell Div ; 18(1): 22, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104091

ABSTRACT

OBJECTIVES: This study aimed to investigate the effect of Jiedu Fuzheng decoction (JFD) in non-small cell lung cancer (NSCLC) and its potential therapeutic mechanism. RESULTS: We prepared JFD-medicated serum from rats and treated NSCLC cells (A549 and NCI-H1650) with 0.5, 1, and 2 mg/mL JFD-medicated serum. CCK-8 and colony formation assays were used to detect cell proliferation. Transwell assays showed that JFD attenuated cell migration and invasion. JFD and SKL2001 (Wnt/ß-catenin activator) were simultaneously used to treat NSCLC cells to verify that JFD regulated the biological behavior of NSCLC via Wnt/ß-catenin signaling. It was found that 2 mg/mL JFD had the most significant effect on the activity of NSCLC cells. JFD attenuated proliferation and metastasis but increased the proportion of apoptotic cells. At the same time, JFD downregulated N-cadherin, vimentin and ß-catenin protein expression in cancer cells. SKL2001 could restore the improvement of JFD on proliferation, metastasis and apoptosis. CONCLUSION: This study confirmed that JFD suppressed the occurrence and development of NSCLC by regulating Wnt/ß-catenin signaling and provided a novel therapeutic scheme for NSCLC.

SELECTION OF CITATIONS
SEARCH DETAIL