Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Int J Biol Macromol ; 264(Pt 2): 130660, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460634

ABSTRACT

The emergence of SARS-CoV-2 presents a significant global public health dilemma. Vaccination has long been recognized as the most effective means of preventing the spread of infectious diseases. DNA vaccines have attracted attention due to their safety profile, cost-effectiveness, and ease of production. This study aims to assess the efficacy of plasmid-encoding GM-CSF (pGM-CSF) as an adjuvant to augment the specific humoral and cellular immune response elicited by DNA vaccines based on the receptor-binding domain (RBD) antigen. Compared to the use of plasmid-encoded RBD (pRBD) alone, mice that were immunized with a combination of pRBD and pGM-CSF exhibited significantly elevated levels of RBD-specific antibody titers in serum, BALF, and nasal wash. Furthermore, these mice generated more potent neutralization antibodies against both the wild-type and Omicron pseudovirus, as well as the ancestral virus. In addition, pGM-CSF enhanced pRBD-induced CD4+ and CD8+ T cell responses and promoted central memory T cells storage in the spleen. At the same time, tissue-resident memory T (Trm) cells in the lung also increased significantly, and higher levels of specific responses were maintained 60 days post the final immunization. pGM-CSF may play an adjuvant role by promoting antigen expression, immune cells recruitment and GC B cell responses. In conclusion, pGM-CSF may be an effective adjuvant candidate for the DNA vaccines against SARS-CoV-2.


Subject(s)
COVID-19 , Vaccines, DNA , Humans , Animals , Mice , Granulocyte-Macrophage Colony-Stimulating Factor , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/prevention & control , Adjuvants, Immunologic/pharmacology , Adjuvants, Pharmaceutic , Vaccination , DNA , Antibodies, Viral , Antibodies, Neutralizing
2.
Int J Antimicrob Agents ; 62(5): 106972, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37741585

ABSTRACT

Eradication of methicillin-resistant Staphylococcus aureus (MRSA) is challenging due to multi-drug resistance of strains and biofilm formation, the latter of which is an important barrier to the penetration of antibiotics and host defences. As such, there is an urgent need to discover and develop novel agents to fight MRSA-associated infection. In this study, HL-J6, a novel indolylbenzoquinone compound, was shown to inhibit S. aureus strains, with a minimum inhibitory concentration against MRSA252 of 2 µg/mL. Moreover, HL-J6 exhibited potent antibiofilm activity in vitro and was able to kill bacteria in biofilm. In the mouse models of wound infection, HL-J6 treatment reduced the MRSA load significantly and inhibited biofilm formation on the wounds. The potent targets of its antibiofilm activity were explored by real-time reverse transcriptase polymerase chain rection, which indicated that HL-J6 downregulated the transcription levels of sarA, atlAE and icaADBC. Moreover, Western blot results showed that HL-J6 reduced the secretion level of α-toxin, a major virulence factor. These findings indicate that HL-J6 is a promising lead compound for the development of novel drugs against MRSA biofilm infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Mice , Staphylococcus aureus , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Microbial Sensitivity Tests
3.
J Plant Physiol ; 272: 153693, 2022 May.
Article in English | MEDLINE | ID: mdl-35413569

ABSTRACT

Genes play regulatory roles in plants' response to low-temperature stress. Our understanding of the mechanism of plants' response to low-temperature stress can be expanded by studying the functions of these genes. SfGPX was cloned from Spiraea fritschiana (S. fritschiana) with the highest low-temperature tolerance, to explore the molecular mechanisms of SfGPX in response to low-temperature stress and the physiological mechanisms involved in the regulation of SfGPX to adapt to low temperature, in two species of Spiraea. SfGPX, which was localized in the cytoplasm, was induced by low temperature. The low-temperature tolerance of Spiraea fritschiana was decreased via the interference of SfGPX, and the low-temperature tolerance of Spiraea japonica 'Gold Mound' (S. japonica 'Gold Mound') was elevated via the overexpression of SfGPX. Under low-temperature stress, the photosynthetic capacity of two species of Spiraea was affected by SfGPX; it was higher in the cold-tolerant plants and lower in the cold-intolerant plants. Under low-temperature stress, the transfer intensity of Ca2+ was affected by SfGPX. The transfer intensity of cold-tolerant plants with lower influx level of Ca2+ kinetics was weaker than that of cold-intolerant plants. Under low-temperature stress, the transfer velocity of Ca2+ was affected by SfGPX, and there were slower effluxes of Ca2+ from Ca2+ reservoir in cold-tolerant plants than in cold-intolerant plants. The above results indicate that the response of Spiraea to low temperature is regulated by SfGPX through affecting photosynthetic capacity as well as intensity and velocity of Ca2+ transfer in response to low temperature in Spiraea.


Subject(s)
Spiraea , Cold Temperature , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Spiraea/metabolism , Temperature
4.
Front Immunol ; 13: 833418, 2022.
Article in English | MEDLINE | ID: mdl-35356002

ABSTRACT

As TLR2 agonists, several lipopeptides had been proved to be candidate vaccine adjuvants. In our previous study, lipopeptides mimicking N-terminal structures of the bacterial lipoproteins were also able to promote antigen-specific immune response. However, the structure-activity relationship of lipopeptides as TLR2 agonists is still unclear. Here, 23 synthetic lipopeptides with the same lipid moiety but different peptide sequences were synthesized, and their TLR2 activities in vitro and mucosal adjuvant effects to OVA were evaluated. LP1-14, LP1-30, LP1-34 and LP2-2 exhibited significantly lower cytotoxicity and stronger TLR2 activity compared with Pam2CSK4, the latter being one of the most potent TLR2 agonists. LP1-34 and LP2-2 assisted OVA to induce more profound specific IgG in sera or sIgA in BALF than Pam2CSK4. Furthermore, the possibility of LP1-34, LP2-2 and Pam2CSK4 as the mucosal adjuvant for the SARS-CoV-2 recombinant RBD (rRBD) was investigated. Intranasally immunized with rRBD plus either the novel lipopeptide or Pam2CSK4 significantly increased the levels of specific serum and respiratory mucosal IgG and IgA, while rRBD alone failed to induce specific immune response due to its low immunogenicity. The novel lipopeptides, especially LP2-2, significantly increased levels of rRBD-induced SARS-CoV-2 neutralizing antibody in sera, BALF and nasal wash. Finally, Support vector machine (SVM) results suggested that charged residues in lipopeptides might be beneficial to the agonist activity, while lipophilic residues might adversely affect the agonistic activity. Figuring out the relationship between peptide sequence in the lipopeptide and its TLR2 activity may lay the foundation for the rational design of novel lipopeptide adjuvant for COVID-19 vaccine.


Subject(s)
COVID-19 , Lipopeptides , Adjuvants, Immunologic/pharmacology , Adjuvants, Pharmaceutic , COVID-19 Vaccines , Humans , Immunity , Immunoglobulin G , Lipopeptides/pharmacology , SARS-CoV-2 , Toll-Like Receptor 2
5.
Front Immunol ; 11: 1069, 2020.
Article in English | MEDLINE | ID: mdl-32655550

ABSTRACT

Acinetobacter baumannii (A. baumannii) is becoming a common global concern due to the emergence of multi-drug or pan-drug resistant strains. Confronting the issue of antimicrobial resistance by developing vaccines against the resistant pathogen is becoming a common strategy. In this study, different methods for preparing A. baumannii outer membrane vesicles (AbOMVs) vaccines were developed. sOMV (spontaneously released AbOMV) was extracted from the culture supernatant, while SuOMV (sucrose-extracted AbOMV) and nOMV (native AbOMV) were prepared from the bacterial cells. Three AbOMVs exhibited significant differences in yield, particle size, protein composition, and LPS/DNA content. To compare the protective efficacy of the three AbOMVs, groups of mice were immunized either intramuscularly or intranasally with each AbOMV. Vaccination via both routes conferred significant protection against lethal and sub-lethal A. baumannii challenge. Moreover, intranasal vaccination provided more robust protection, which may be attributed to the induction of significant sIgA response in mucosal sites. Among the three AbOMVs, SuOMV elicited the highest level of protective immunity against A. baumannii infection, whether intramuscular or intranasal immunization, which was characterized by the expression of the most profound specific serum IgG or mucosal sIgA. Taken together, the preparation method had a significant effect on the yield, morphology, and composition of AbOMVs, that further influenced the protective effect against A. baumannii infection.


Subject(s)
Acinetobacter baumannii/immunology , Bacterial Vaccines/isolation & purification , Acinetobacter Infections/immunology , Acinetobacter Infections/microbiology , Acinetobacter Infections/prevention & control , Acinetobacter baumannii/pathogenicity , Acinetobacter baumannii/ultrastructure , Administration, Intranasal , Animals , Antibodies, Bacterial/biosynthesis , Antibodies, Bacterial/blood , Antibody Specificity , Bacterial Outer Membrane/immunology , Bacterial Outer Membrane/ultrastructure , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/isolation & purification , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/immunology , Cytokines/metabolism , Dendritic Cells/immunology , Disease Models, Animal , Female , Humans , Immunity, Mucosal , Immunoglobulin A, Secretory/biosynthesis , Immunoglobulin G/blood , Immunoglobulin G/classification , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission
6.
Eur J Pharmacol ; 883: 173326, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32598953

ABSTRACT

Since December 2019, the coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread throughout China as well as other countries. More than 8,700,000 confirmed COVID-19 cases have been recorded worldwide so far, with much more cases popping up overseas than those inside. As the initial epicenter in the world, China has been combating the epidemic for a relatively longer period and accumulated valuable experience in prevention and control of COVID-19. This article reviewed the clinical use, mechanism and efficacy of the clinically approved drugs recommended in the Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (DTPNCP) released by National Health Commission of P.R.China, and the novel therapeutic agents now undergoing clinical trials approved by China National Medical Products Administration (NMPA) to evaluate experimental treatment for COVID-19. Reviewing the progress in drug development for the treatment against COVID-19 in China may provide insight into the epidemic control in other countries.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections , Pandemics , Pneumonia, Viral , Betacoronavirus/drug effects , COVID-19 , China/epidemiology , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Humans , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , SARS-CoV-2 , COVID-19 Drug Treatment
7.
Zhongguo Zhong Yao Za Zhi ; 43(13): 2817-2823, 2018 Jul.
Article in Chinese | MEDLINE | ID: mdl-30111036

ABSTRACT

Combined use of drugs is a hot spot in the research of new drugs nowadays, and traditional Chinese medicine (TCM) is a classic practice in the combined use of drugs. In this paper, the compatibility of TCM prescriptions and the related properties of composed herbs were calculated and studied to verify and discuss the feasibility of the results in guiding compatibility. Research Group on New Drug Design, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences had established a structured database of TCM prescriptions by using traditional Chinese medicine inheritance support system (TCMISS V2.0), including 4 012 prescription compatibilities, 2 072 drug components, 381 kinds of TCM diseases, 316 kinds of TCM syndromes and 26 kinds of drug properties. On the basis of the created database above, Support Vector Machine (SVM) was used to analyze the prescription compatibility data and establish a model for predicting feasibility of drug compatibilities. Analytic Hierarchy Process (AHP) and cluster analysis were used to study the influence of drug properties in the rationality of prescription compatibility. The computational results showed that the accuracy in efficacy prediction of two data sets, i.e. prescription-disease and prescription-syndrome, was up to 90% in the linear SVM model. The macro₋averaging and micro₋averaging of the two models were around 0.92, 0.46, respectively. After AHP mapping, most of the incompatible combinations showed significant difference with other drug combinations during the clustering process in the vertical icicle, indicating that the proper machine learning algorithm can be used to lay the foundation for further exploring the combination rules in TCM and establishing more detailed drug-disease and syndrome predicting models, and provide theoretical guidance for the study of the combined use of drugs to a certain degree.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Drug Prescriptions , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL