Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Adv Sci (Weinh) ; 11(35): e2308417, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39041891

ABSTRACT

O6-methylguanine DNA methyltransferase (MGMT) removes alkyl adducts from the guanine O6 position (O6-MG) and repairs DNA damage. High MGMT expression results in poor response to temozolomide (TMZ). However, the biological importance of MGMT and the mechanism underlying its high expression in pancreatic neuroendocrine tumors (PanNETs) remain elusive. Here, it is found that MGMT expression is highly elevated in PanNET tissues compared with paired normal tissues and negatively associated with progression-free survival (PFS) time in patients with PanNETs. Knocking out MGMT inhibits cancer cell growth in vitro and in vivo. Ectopic MEN1 expression suppresses MGMT transcription in a manner that depends on ß-Catenin nuclear export and degradation. The Leucine 267 residue of MEN1 is crucial for regulating ß-Catenin-MGMT axis activation and chemosensitivity to TMZ. Interference with ß-Catenin re-sensitizes tumor cells to TMZ and significantly reduces the cytotoxic effects of high-dose TMZ treatment, and MGMT overexpression counteracts the effects of ß-Catenin deficiency. This study reveals the biological importance of MGMT and a new mechanism by which MEN1 deficiency regulates its expression, thus providing a potential combinational strategy for treating patients with TMZ-resistant PanNETs.


Subject(s)
DNA Modification Methylases , DNA Repair Enzymes , Drug Resistance, Neoplasm , Neuroendocrine Tumors , Pancreatic Neoplasms , Temozolomide , beta Catenin , Animals , Female , Humans , Male , Mice , Antineoplastic Agents, Alkylating/pharmacology , beta Catenin/metabolism , beta Catenin/genetics , Cell Line, Tumor , Disease Models, Animal , DNA Modification Methylases/metabolism , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Mice, Nude , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Temozolomide/pharmacology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
2.
Hum Cell ; 37(5): 1522-1534, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39078546

ABSTRACT

Pancreatic neuroendocrine tumors are the second most common tumors of the pancreas, and approximately half of patients are diagnosed with liver metastases. Currently, the improvement in the efficacy of relevant treatment methods is still limited. Therefore, there is an urgent need for in-depth research on the molecular biological mechanism of pancreatic neuroendocrine tumors. However, due to their relatively inert biology, preclinical models are extremely scarce. Here, the patient-derived organoid, and patient-derived xenograft were successfully constructed. These two models and the previously constructed cell line named SPNE1 all derived from the same patient with a grade 3 non-functional pancreatic neuroendocrine tumor, providing new tumor modeling platforms, and characterized using immunohistochemistry, whole-exome sequencing, and single-cell transcriptome sequencing. Combined with a tumor formation experiment in immunodeficient mice, we selected the model that most closely recapitulated the parental tumor. Overall, the patient-derived xenograft model most closely resembled human tumor tissue.


Subject(s)
Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/therapy , Animals , Disease Models, Animal , Mice , Heterografts , Cell Line, Tumor , Organoids , Exome Sequencing
3.
Cell Prolif ; : e13694, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38938061

ABSTRACT

Pancreatic cancer cells have a much higher metabolic demand than that of normal cells. However, the abundant interstitium and lack of blood supply determine the lack of nutrients in the tumour microenvironment. Although pancreatic cancer has been reported to supply extra metabolic demand for proliferation through autophagy and other means, the specific regulatory mechanisms have not yet been elucidated. In this study, we focused on transcription factor EB (TFEB), a key factor in the regulation of autophagy, to explore its effect on the phenotype and role in the unique amino acid utilisation pattern of pancreatic cancer cells (PCCs). The results showed that TFEB, which is generally highly expressed in pancreatic cancer, promoted the proliferation and metastasis of PCCs. TFEB knockdown inhibited the proliferation and metastasis of PCCs by blocking the catabolism of branched-chain amino acids (BCAAs). Concerning the mechanism, we found that TFEB regulates the catabolism of BCAAs by regulating BCAT1, a key enzyme in BCAA metabolism. BCAA deprivation alone did not effectively inhibit PCC proliferation. However, BCAA deprivation combined with eltrombopag, a drug targeting TFEB, can play a two-pronged role in exogenous supply deprivation and endogenous utilisation blockade to inhibit the proliferation of pancreatic cancer to the greatest extent, providing a new therapeutic direction, such as targeted metabolic reprogramming of pancreatic cancer.

4.
Cancer Lett ; 588: 216769, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38438098

ABSTRACT

Cancer-associated fibroblasts (CAFs) play an important role in a variety of cancers. However, the role of tumor stroma in nonfunctional pancreatic neuroendocrine tumors (NF-PanNETs) is often neglected. Profiling the heterogeneity of CAFs can reveal the causes of malignant phenotypes in NF-PanNETs. Here, we found that patients with high stromal proportion had poor prognosis, especially for that with infiltrating stroma (stroma and tumor cells that presented an infiltrative growth pattern and no regular boundary). In addition, myofibroblastic CAFs (myCAFs), characterized by FAP+ and α-SMAhigh, were spatially closer to tumor cells and promoted the EMT and tumor growth. Intriguingly, only tumor cells which were spatially closer to myCAFs underwent EMT. We further elucidated that myCAFs stimulate TGF-ß expression in nearby tumor cells. Then, TGF-ß promoted the EMT in adjacent tumor cells and promoted the expression of myCAFs marker genes in tumor cells, resulting in distant metastasis. Our results indicate that myCAFs cause spatial heterogeneity of EMT, which accounts for liver metastasis of NF-PanNETs. The findings of this study might provide possible targets for the prevention of liver metastasis.


Subject(s)
Cancer-Associated Fibroblasts , Liver Neoplasms , Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Cell Line, Tumor , Neuroendocrine Tumors/pathology , Cancer-Associated Fibroblasts/metabolism , Pancreatic Neoplasms/pathology , Phenotype , Transforming Growth Factor beta/metabolism , Liver Neoplasms/pathology , Tumor Microenvironment
5.
Cancer Med ; 12(17): 18425-18439, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37553876

ABSTRACT

BACKGROUND: Nuclear receptor coactivator 6 (NCoA6) is overexpressed in various cancers and considered a multifunctional coactivator of various transcription factors and nuclear receptors. However, the role of NCoA6 in pancreatic ductal adenocarcinoma (PDAC) remains unclear. METHODS: NCoA6 expression data in PDAC were extracted from TCGA and GTEx databases, and their correlation with survival outcomes were analyzed using the Kaplan-Meier plotter database. NCoA6 protein expression in PDAC tissues was evaluated using immunohistochemistry. RNA-sequencing technology was used to sequence the transcriptome of NCoA6-silenced PANC-1 cells, followed by differential expression, GO/KEGG and GSEA analyses. The effects of NCoA6 on cell proliferation, migration, invasion, cell cycle, and apoptosis were determined in two representative cell lines (PANC-1 and SW1990). Western blotting, qPCR, and co-immunoprecipitation were performed to explore the mechanism of action of NCoA6 in PDAC cells. RESULTS: NCoA6 expression was markedly increased in PDAC tissues, and high NCoA6 expression was associated with poor survival prognosis. However, there was no significant relationship between NCoA6 expression and metastasis in PDAC patients. Our RNA-sequencing data analysis found 1194 significant differentially expressed genes between the control and NCoA6-silenced PANC-1 cells. GO/KEGG analysis results mainly focused on cytokine production, cytokine activity, and cytokine-cytokine receptor interactions. GSEA results showed that the knockdown of NCoA6 affected the expression of histone deacetylase 1 (HDAC1) targeted genes. NCoA6 knockdown suppressed proliferation, migration, and invasion of PDAC cells. Finally, western blotting, qPCR, and co-immunoprecipitation results showed that NCoA6 interacted with HDAC1 and that NCoA6 expression was negatively correlated with F-box and WD repeat domain-containing 7 (FBW7) and caudal-related homeobox transcription factor 2 (CDX2) expression in pancreatic cancer. CONCLUSIONS: NCoA6 has a profound effect on cell proliferation, migration, invasion, and prognosis of PDAC and is potentially related to the expression of HDAC1, FBW7, and CDX2. Our results may provide novel therapeutic strategies for PDAC patients.

6.
Cell Prolif ; 56(10): e13478, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37060186

ABSTRACT

Lactate is not only an endpoint of glycolysis but is gradually being discovered to play the role of a universal metabolic fuel for energy via the 'lactate shuttle' moving between cells and transmitting signals. The glycolytic-dependent metabolism found in tumours and fast-growing cells has made lactate a pivotal player in energy metabolism reprogramming, which enables cells to obtain abundant energy in a short time. Moreover, lactate can provide favourable conditions for tumorigenesis by shaping the acidic tumour microenvironment, recruiting immune cells, etc. and the recently discovered lactate-induced lactylation moves even further on pro-tumorigenesis mechanisms of lactate production, circulation and utilization. As with other epigenetic modifications, lactylation can modify histone proteins to alter the spatial configuration of chromatin, affect DNA accessibility and regulate the expression of corresponding genes. What's more, the degree of lactylation is inseparable from the spatialized lactate concentration, which builds a bridge between epigenetics and metabolic reprogramming. Here, we review the important role of lactate in energy reprogramming, summarize the latest finding of lactylation in tumorigenesis and try to explore therapeutic strategies in oncotherapy that can kill two birds with one stone.


Subject(s)
Lactic Acid , Neoplasms , Humans , Neoplasms/genetics , Carcinogenesis , Histones , Cell Transformation, Neoplastic , Epigenesis, Genetic , Tumor Microenvironment
7.
Acta Pharmacol Sin ; 44(8): 1536-1548, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37012494

ABSTRACT

Autophagy-lysosome system plays a variety of roles in human cancers. In addition to being implicated in metabolism, it is also involved in tumor immunity, remodeling the tumor microenvironment, vascular proliferation, and promoting tumor progression and metastasis. Transcriptional factor EB (TFEB) is a major regulator of the autophagy-lysosomal system. With the in-depth studies on TFEB, researchers have found that it promotes various cancer phenotypes by regulating the autophagolysosomal system, and even in an autophagy-independent way. In this review, we summarize the recent findings about TFEB in various types of cancer (melanoma, pancreatic ductal adenocarcinoma, renal cell carcinoma, colorectal cancer, breast cancer, prostate cancer, ovarian cancer and lung cancer), and shed some light on the mechanisms by which it may serve as a potential target for cancer treatment.


Subject(s)
Breast Neoplasms , Carcinoma, Pancreatic Ductal , Lung Neoplasms , Pancreatic Neoplasms , Male , Humans , Autophagy , Tumor Microenvironment
8.
Cancer Res ; 83(13): 2226-2247, 2023 07 05.
Article in English | MEDLINE | ID: mdl-36939378

ABSTRACT

Pancreatic neuroendocrine tumors (PanNET) are a group of rare sporadic malignant tumors in the pancreas. MEN1 is the most frequently mutated gene in PanNETs. The MEN1-encoded protein is a typical tumor suppressor that forms a complex with epigenetic and transcription factors and is an attractive target for therapeutic interventions for patients with PanNET. A better understanding of the regulation of MEN1 protein expression in PanNETs could identify strategies for targeting MEN1. Here, we found that the neddylation pathway and DCAF7-mediated ubiquitination regulated MEN1 protein expression. Increased expression of members of the neddylation pathway and DCAF7 was found in PanNET tissues compared with paired-adjacent tissues and was associated with poor prognosis in patients with PanNET. Suppression of neddylation using the neddylation inhibitor MLN4924 or RNA interference significantly induced MEN1 accumulation and repressed cancer-related malignant phenotypes. CUL4B and DCAF7 promoted MEN1 degradation by binding and catalyzing its ubiquitination. In PanNET cells resistant to everolimus, a pharmacologic mTOR inhibitor widely used for advanced PanNET patient treatment, the downregulation of DCAF7 expression overcame resistance and synergized with everolimus to suppress mTOR activation and to inhibit cancer cell growth. The effects of DCAF7 loss could be counteracted by the simultaneous knockdown of MEN1 both in vitro and in vivo. The inverse correlation between DCAF7 and MEN1 was further validated in clinical specimens. This study revealed that the posttranslational control of MEN1 expression in PanNET is mediated by neddylation and the CUL4B-DCAF7 axis and identifies potential therapeutic targets in patients with MEN1-associated PanNET. SIGNIFICANCE: Identification of neddylation and ubiquitination pathways that regulate MEN1 protein stability provides an opportunity for therapeutic interventions for treating patients with pancreatic neuroendocrine tumors.


Subject(s)
Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Adaptor Proteins, Signal Transducing/metabolism , Cullin Proteins/genetics , Everolimus , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism
9.
Acta Pharmacol Sin ; 44(4): 865-876, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36284209

ABSTRACT

Hernandezine (Her) is a bisbenzylisoquinoline alkaloid extracted from the traditional Chinese herbal medicine Thalictrum glandulosissimum. Evidence shows that Her is a natural agonist of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and induces apoptosis and autophagy in tumor cells. In this study, we investigated the role of autophagy in Her-induced cell death in human pancreatic cancer cell lines. We showed that Her dose-dependently suppressed cell proliferation, promoted autophagy and induced autophagic death in pancreatic ductal adenocarcinoma (PDAC) cell lines Capan-1 and SW1990. The IC50 values of Her in inhibition of Capan-1 and SW1990 cells were 47.7 µM and 40.1 µM, respectively. Immunoblotting showed that Her (1-40 µM) promoted the conversion of LC3-I to LC3-II, and Her exerted concentration-dependent and time-dependent effects on autophagy activation in PDAC cells. In transmission electron microscopy and fluorescence image analysis, we found that autophagic vacuoles were significantly increased in Her-treated cells. Knockdown of ATG5, a key gene in the autophagy pathway, alleviated the activation of autophagy by Her. These results demonstrated that Her induced autophagy in PDAC cells. Intensely activated autophagy could promote cell death. The autophagy inhibitors, BafA1 and HCQ significantly inhibited Her-induced cell death, implying that Her induced autophagic cell death in PDAC cells. Moreover, we showed that Her activated autophagy by increasing the phosphorylation of AMPK and decreasing the phosphorylation of mTOR/p70S6K. Knockdown of AMPKα relieves the autophagic cell death induced by Her. Furthermore, Her concentration-dependently enhanced reactive oxygen species (ROS) generation in PDAC cells. Antioxidants could reduce the phosphorylation of AMPK and suppress autophagic cell death induced by Her. Our study provides evidence for the development of Her as a therapeutic agent for the treatment of pancreatic cancer.


Subject(s)
Autophagic Cell Death , Benzylisoquinolines , Pancreatic Neoplasms , Female , Humans , AMP-Activated Protein Kinases/metabolism , Apoptosis , Autophagic Cell Death/drug effects , Autophagy , Benzylisoquinolines/pharmacology , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Signal Transduction , Pancreatic Neoplasms
10.
Hum Cell ; 35(4): 1248-1261, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35394261

ABSTRACT

The mechanisms of neuroendocrine tumor (NET) were still poorly understood, largely due to the lack of preclinical models of neuroendocrine neoplasms. Herein, we established and characterized SPNE1 cell lines from primary pancreatic NET tissue obtained from a 44-year-old female. Neuroendocrine character of SPNE1 was compared with existing non-functional cell lines BON1 and QGP1, and the results indicated expressions of multiple NET-specific markers in SPNE1 were higher relative to BON1 and QGP1. The growth character measured by Ki67 labeling index, cell cycle analysis, and 3D matrigel spheroid essay indicated that the proliferative rate of SPNE1 was lower than that of BON1 and QGP1. SPNE1 also was characterized with cancer stemness because of the higher proportion of CD44 + and CD117 + subpopulations relative to BON1, whereas it was similar to that of QGP1. Interestingly, SPNE1 highly expressed somatostatin receptors (SSTR2 and SSTR5) and angiogenic factors (VEGF1). SPNE1 had sensitive response to the four clinical treatments including tyrosine kinase inhibitor (TKI), mTOR inhibitors, somatostatin analogs (SSA), chemotherapy, which was similar to the BON1 and QGP1. Subcutaneous transplantations of SPNE1 also present the tumorigenicity, and neuroendocrine marker expression of xenograft tumors resembled the original human NET tissue. Then, we found a total of 8 common mutation in BON1, QGP1 and SPNE1 included CROCC, FAM135A, GPATCH4, CTBP2, FBXL14, HERC2, HYDIN, and PABPC3 using whole-exome sequencing (WES), and more neuroendocrine-related functional processes were enriched based on the private mutation genes in SPNE1, such as neuron migration, insulin secretion, and neuron to neuron synapse. In brief, SPNE1 could be used as a relevant model to study pancreatic NET biology and to develop novel treatment options.


Subject(s)
Neuroendocrine Tumors , Pancreatic Neoplasms , Adult , Cell Line, Tumor , Cell Movement , Female , Humans , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/metabolism , Pancreatic Neoplasms/pathology
11.
Acta Biochim Biophys Sin (Shanghai) ; 54(11): 1599-1609, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36604142

ABSTRACT

Pancreatic neuroendocrine tumor (pNET) is the second most common malignant tumors of the pancreas. Multiple endocrine neoplasia 1 ( MEN1) is the most frequently mutated gene in pNETs and MEN1-encoded protein, menin, is a scaffold protein that interacts with transcription factors and chromatin-modifying proteins to regulate various signaling pathways. However, the role of MEN1 in lipid metabolism has not been studied in pNETs. In this study, we perform targeted metabolomics analysis and find that MEN1 promotes the generation and oxidation of polyunsaturated fat acids (PUFAs). Meanwhile lipid peroxidation is a hallmark of ferroptosis, and we confirm that MEN1 promotes ferroptosis by inhibiting the activation of mTOR signaling which is the central hub of metabolism. We show that stearoyl-coA desaturase (SCD1) is the downstream of MEN1-mTOR signaling and oleic acid (OA), a metabolite of SCD1, recues the lipid peroxidation caused by MEN1 overexpression. The negative correlation between MEN1 and SCD1 is further verified in clinical specimens. Furthermore, we find that BON-1 and QGP-1 cells with MEN1 overexpression are more sensitive to everolimus, a widely used drug in pNETs that targets mTOR signaling. In addition, combined use everolimus with ferroptosis inducer, RSL3, possesses a more powerful ability to kill cells, which may provide a new strategy for the comprehensive therapy of pNETs.


Subject(s)
Ferroptosis , Neuroendocrine Tumors , Pancreatic Neoplasms , Proto-Oncogene Proteins , Humans , Everolimus , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Stearoyl-CoA Desaturase/genetics , TOR Serine-Threonine Kinases , Transcription Factors , Proto-Oncogene Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL