Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Genome ; : e20480, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840306

ABSTRACT

Seven in absentia proteins, which contain a conserved SINA domain, are involved in regulating various aspects of wheat (Triticum aestivum L.) growth and development, especially in response to environmental stresses. However, it is unclear whether TaSINA family members are involved in regulating grain development until now. In this study, the expression pattern, genomic polymorphism, and relationship with grain-related traits were analyzed for all TaSINA members. Most of the TaSINA genes identified showed higher expression levels in young wheat spikes or grains than other organs. The genomic polymorphism analysis revealed that at least 62 TaSINA genes had different haplotypes, where the haplotypes of five genes were significantly correlated with grain-related traits. Kompetitive allele-specific PCR markers were developed to confirm the single nucleotide polymorphisms in TaSINA101 and TaSINA109 among the five selected genes in a set of 292 wheat accessions. The TaSINA101-Hap II and TaSINA109-Hap II haplotypes had higher grain weight and width compared to TaSINA101-Hap I and TaSINA109-Hap I in at least three environments, respectively. The qRT-PCR assays revealed that TaSINA101 was highly expressed in the palea shell, seed coat, and embryo in young wheat grains. The TaSINA101 protein was unevenly distributed in the nucleus when transiently expressed in the protoplast of wheat. Three homozygous TaSINA101 transgenic lines in rice (Oryza sativa L.) showed higher grain weight and size compared to the wild type. These findings provide valuable insight into the biological function and elite haplotype of TaSINA family genes in wheat grain development at a genomic-wide level.

2.
J Agric Food Chem ; 71(19): 7258-7267, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37141589

ABSTRACT

Aegilops comosa (2n = 2x = 14, MM) contains many excellent genes/traits for wheat breeding. Wheat-Ae. comosa introgression lines have potential value in the genetic improvement of wheat quality. A disomic 1M (1B) Triticum aestivum-Ae. comosa substitution line NAL-35 was identified by fluorescence in situ hybridization and genomic in situ hybridization analysis from a hybridization cross between a disomic 1M (1D) substitution line NB 4-8-5-9 with CS N1BT1D. The observation of pollen mother cells showed that NAL-35 had normal chromosome pairing, suggesting that NAL-35 could be used for the quality test. NAL-35 with alien Mx and My subunits showed positive effects on some protein-related parameters including high protein content and high ratios of high-molecular-weight glutenin subunits (HMW-GSs)/glutenin and HMW-GS/low-molecular-weight glutenin subunits. The changes in gluten composition improved the rheological properties of the dough of NAL-35, resulting in a tighter and more uniform microstructure. NAL-35 is a potential material for wheat quality improvement that transferred quality-related genes from Ae. comosa.


Subject(s)
Aegilops , Triticum , Aegilops/genetics , Aegilops/metabolism , Glutens/chemistry , Glutens/metabolism , Hybridization, Genetic , Seeds , Triticum/chemistry , Triticum/metabolism
3.
Front Plant Sci ; 13: 802310, 2022.
Article in English | MEDLINE | ID: mdl-35222467

ABSTRACT

Grain weight is a key determinant for grain yield potential in wheat, which is highly governed by a type of quantitative genetic basis. The identification of major quantitative trait locus (QTL) and functional genes are urgently required for molecular improvements in wheat grain yield. In this study, major genomic regions and putative candidate genes for thousand grain weight (TGW) were revealed by integrative approaches with QTL linkage mapping, meta-analysis and transcriptome evaluation. Forty-five TGW QTLs were detected using a set of recombinant inbred lines, explaining 1.76-12.87% of the phenotypic variation. Of these, ten stable QTLs were identified across more than four environments. Meta-QTL (MQTL) analysis were performed on 394 initial TGW QTLs available from previous studies and the present study, where 274 loci were finally refined into 67 MQTLs. The average confidence interval of these MQTLs was 3.73-fold less than that of initial QTLs. A total of 134 putative candidate genes were mined within MQTL regions by combined analysis of transcriptomic and omics data. Some key putative candidate genes similar to those reported early for grain development and grain weight formation were further discussed. This finding will provide a better understanding of the genetic determinants of TGW and will be useful for marker-assisted selection of high yield in wheat breeding.

4.
BMC Plant Biol ; 22(1): 58, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35105304

ABSTRACT

BACKGROUND: Sucrose, the major product of photosynthesis and the primary sugar transported as a soluble carbohydrate via the phloem, is a critical determinant for harvest yield in wheat crops. Sucrose-phosphatase (SPP) catalyzes the final step in the sucrose biosynthesis pathway, implying its essential role in the plant. RESULT: In this study, wheat SPP homologs genes were isolated from chromosomes 5A, 5B, and 5D, designated as TaSPP-5A, TaSPP-5B, and TaSPP-5D, respectively. Sequence alignment showed one 1-bp Insertion-deletion (InDel) and three single nucleotide polymorphisms (SNPs) at TaSPP-5A coding region, forming two haplotypes, TaSPP-5Aa and TaSPP-5Ab, respectively. A derived cleaved amplified polymorphism sequence (dCAPS) marker, TaSPP-5A-dCAPS, was developed to discriminate allelic variation based on the polymorphism at position 1242 (C-T). A total of 158 varieties were used to perform a TaSPP-5A marker-trait association analysis, where two haplotypes were significantly associated with sucrose content in two environments and with thousand-grain weight (TGW) and grain length (GL) in three environments. Quantitative real-time PCR further revealed that TaSPP-5Aa showed relatively higher expression than TaSPP-5Ab in wheat seedling leaves, generally associating with increased sucrose content and TGW. The expression of TaSPP-5A and sucrose content in TaSPP-5Aa haplotypes were also higher than those in TaSPP-5Ab haplotypes under both 20% PEG-6000 and 100 µM ABA treatment. Sequence alignment showed that the two TaSPP-5A haplotypes comprised 11 SNPs from -395 to -1962 bp at TaSPP-5A promoter locus, participating in the formation of several conserved sequences, may account for the high expression of TaSPP-5A in TaSPP-5Aa haplotypes. In addition, the distribution analysis of TaSPP-5A haplotypes revealed that TaSPP-5Aa was preferred in the natural wheat population, being strongly positively selected in breeding programs. CONCLUSION: According to the SNPs detected in the TaSPP-5A sequence, two haplotypes, TaSPP-5Aa and TaSPP-5Ab, were identified among wheat accessions, which potential value for sucrose content selection was validated by association analysis. Our results indicate that the favorable allelic variation TaSPP-5Aa should be valuable in enhancing grain yield by improving the sucrose content. Furthermore, a functional marker, TaSPP-5A-dCAPS, can be used for marker-assisted selection to improve grain weight in wheat and provides insights into the biological function of TaSPP-5A gene.


Subject(s)
Genes, Plant , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Sucrose/metabolism , Triticum/genetics , Triticum/metabolism , China , Edible Grain/genetics , Edible Grain/metabolism , Gene Expression Regulation, Plant , Genetic Variation , Genotype
5.
Mol Biol Rep ; 49(4): 2899-2913, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35083611

ABSTRACT

BACKGROUND: Plant glycogen synthase kinase 3/shaggy kinase (GSK3) proteins contain the conserved kinase domain and play a pivotal role in the regulation of plant growth and abiotic stress responses. Nonetheless, genome-wide analysis of the GSK gene family in wheat (Triticum aestivum L.) has not been reported. METHODS AND RESULTS: Using high-quality wheat genome sequences, a comprehensive genome-wide characterization of the GSK gene family in wheat was conducted. Their phylogenetics, chromosome location, gene structure, conserved domains, promoter cis-elements, gene duplications, and network interactions were systematically analyzed. In this study, we identified 22 GSK genes in wheat genome that were unevenly distributed on nine wheat chromosomes. Based on phylogenetic analysis, the GSK genes from Arabidopsis, rice, barley, and wheat were clustered into four subfamilies. Gene structure and conserved protein motif analysis revealed that GSK proteins in the same subfamily share similar motif structures and exon/intron organization. Results from gene duplication analysis indicate that four segmental duplications events contribute to the expansion of the wheat GSK gene family. Promoter analysis indicated the participation of TaSK genes in response to the hormone, light and abiotic stress, and plant growth and development. Furthermore, gene network analysis found that five TaSKs were involved in the regulatory network and 130 gene pairs of network interactions were identified. The heat map generated from the available transcriptomic data revealed that the TaSKs exhibited preferential expression in specific tissues and different expression patterns under abiotic stress conditions. Moreover, results from qRT-PCR analysis revealed that the randomly selected TaSK genes were abundantly expressed in spikes and grains at one specific developmental stage, as well as in responding to drought and salt stress. CONCLUSIONS: These findings clearly depicted the evolutionary processes and the characteristics, and expression profiles of the GSK gene family in wheat, revealed their role in wheat development and response to abiotic stress responses.


Subject(s)
Gene Expression Regulation, Plant , Triticum , Gene Expression Regulation, Plant/genetics , Genome, Plant/genetics , Glycogen Synthase Kinase 3/metabolism , Multigene Family/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL