Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Insect Sci ; 23(6)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38055948

ABSTRACT

Because nontarget, beneficials, like insect pollinators, may be exposed unintentionally to insecticides, it is important to evaluate the impact of chemical controls on the behaviors performed by insect pollinators in field trials. Here we examine the impact of a portable mosquito repeller, which emits prallethrin, a pyrethroid insecticide, on honey bee foraging and recruitment using a blinded, randomized, paired, parallel group trial. We found no significant effect of the volatilized insecticide on foraging frequency (our primary outcome), waggle dance propensity, waggle dance frequency, and feeder persistency (our secondary outcomes), even though an additional deposition study confirmed that the treatment device was performing appropriately. These results may be useful to consumers that are interested in repelling mosquitos, but also concerned about potential consequences to beneficial insects, such as honey bees.


Subject(s)
Bees , Behavior, Animal , Culicidae , Insecticides , Pyrethrins , Animals , Animal Communication , Appetitive Behavior/drug effects , Bees/drug effects , Behavior, Animal/drug effects , Insect Repellents/pharmacology , Insecticides/pharmacology , Pyrethrins/pharmacology
2.
Yale J Biol Med ; 93(2): 283-289, 2020 06.
Article in English | MEDLINE | ID: mdl-32607089

ABSTRACT

Mitragyna speciosa, otherwise known as kratom, is a plant in the coffee family (Rubiaceae) native to Southeast Asia and Thailand whose leaves have been shown to cause opioid-like and stimulant responses upon ingestion. The major pharmacologically active compounds present in kratom, mitragynine and 7-hydroxymitragynine (7-HMG), are both indole alkaloids and are responsible for its opioid-like activity. While kratom is most commonly known for its affinity for mu-opioid receptors, research has shown one of its active components has effects on the same receptors to which some antipsychotics bind, such as D2 dopamine, serotonin (5-HT2C and 5-HT7), and alpha-2 adrenergic receptors displaying possible indications of kratom to be used as both antipsychotics and antidepressants. Although studies to evaluate this effect are still lacking, several online and in-person surveys note relief of depression and anxiety symptoms among those who consume kratom products, and in fact identify it as a common reason for consumption. This then highlights the dire need for further research to be conducted on kratom, its mechanism of action and the constituents that elicit these antidepressant, anxiolytic, and antipsychotic properties.


Subject(s)
Antidepressive Agents/pharmacology , Antipsychotic Agents/pharmacology , Behavioral Symptoms/drug therapy , Mitragyna , Biological Products/pharmacology , Humans , Indole Alkaloids/pharmacology , Receptors, Opioid , Secologanin Tryptamine Alkaloids/pharmacology , Treatment Outcome
3.
Biochim Biophys Acta Gen Subj ; 1861(12): 3257-3262, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28943300

ABSTRACT

BACKGROUND: Ferritins are ubiquitous multi-subunit iron storage and detoxification proteins that play a critical role in iron homeostasis. Ferrous ions that enter the protein's shell through hydrophilic channels are rapidly oxidized at dinuclear centers on the H-subunit before transfer to the protein's cavity for storage. The mechanisms of iron loading have been extensively studied, but little is known about iron mobilization. Fe(III) reduction can occur via rapid reduction by suitable reducing agents followed by chelation of Fe(II) ions or via direct and slow Fe(III) chelation. Here, the iron release kinetics from ferritin by FMNH2 in the presence of various chaotropic agents are studied and their in-vivo physiological significance discussed. METHODS: The iron release kinetics from horse and human ferritins by FMNH2 were monitored at 522nm where the Fe(II)-bipyridine complex absorbs. The experiments were performed in the presence of different concentrations of three chaotropic agents, urea, guanidine HCl, and triton. RESULTS AND CONCLUSIONS: Under our experimental conditions, iron reductive mobilization by the non-enzymatic FMN/NAD(P)H system is limited by the concentration of FMNH2 and is independent on the type or amount of chaotropes present. Diffusion of FMNH2 through the ferritin pores is an unlikely mechanism for ferritin iron reduction. An iron mobilization mechanism involving rapid electron transfer through the protein shell is discussed. GENERAL SIGNIFICANCE: Caution must be exercised when interpreting the kinetics of iron mobilization from ferritin using the FMN/NAD(P)H system. The kinetics are highly dependent on the amount of dissolved oxygen and the concentration of reagents used.


Subject(s)
Ferritins/chemistry , Flavin Mononucleotide/pharmacology , Hydroquinones/pharmacology , Iron/chemistry , Animals , Electron Transport , Guanidine/pharmacology , Horses , Humans , Kinetics , Octoxynol/pharmacology , Oxidation-Reduction , Urea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...