Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Geohealth ; 1(1): 17-36, 2017 Mar.
Article in English | MEDLINE | ID: mdl-30596189

ABSTRACT

Few conceptual frameworks attempt to connect disaster-associated environmental injuries to impacts on ecosystem services (the benefits humans derive from nature) and thence to both psychological and physiological human health effects. To our knowledge, this study is one of the first, if not the first, to develop a detailed conceptual model of how degraded ecosystem services affect cumulative stress impacts on the health of individual humans and communities. Our comprehensive Disaster-Pressure State-Ecosystem Services-Response-Health (DPSERH) model demonstrates that oil spills, hurricanes, and other disasters can change key ecosystem components resulting in reductions in individual and multiple ecosystem services that support people's livelihoods, health, and way of life. Further, the model elucidates how damage to ecosystem services produces acute, chronic, and cumulative stress in humans which increases risk of adverse psychological and physiological health outcomes. While developed and initially applied within the context of the Gulf of Mexico, it should work equally well in other geographies and for many disasters that cause impairment of ecosystem services. Use of this new tool will improve planning for responses to future disasters and help society more fully account for the costs and benefits of potential management responses. The model also can be used to help direct investments in improving response capabilities of the public health community, biomedical researchers, and environmental scientists. Finally, the model illustrates why the broad range of potential human health effects of disasters should receive equal attention to that accorded environmental damages in assessing restoration and recovery costs and time frames.

2.
Antonie Van Leeuwenhoek ; 95(2): 121-33, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19052913

ABSTRACT

The Atacama Desert presents one of the most extreme environments on Earth and we report here the first extensive isolations of actinomycetes from soils at various locations within the Desert. The use of selective isolation procedures enabled actinomycetes to be recovered from arid, hyper-arid and even extreme hyper-arid environments in significant numbers and diversity. In some cases actinomycetes were the only culturable bacteria to be isolated under the conditions of this study. Phylogenetic analysis and some phenotypic characterisation revealed that the majority of isolates belonged to members of the genera Amycolatopsis, Lechevalieria and Streptomyces, a high proportion of which represent novel centres of taxonomic variation. The results of this study support the view that arid desert soils constitute a largely unexplored repository of novel bacteria, while the high incidence of non-ribosomal peptide synthase genes in our isolates recommend them as promising material in screening for new bioactive natural products.


Subject(s)
Actinobacteria/classification , Actinobacteria/isolation & purification , Genetic Variation , Soil Microbiology , Actinobacteria/genetics , Chile , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Molecular Sequence Data , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL