Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Opt Soc Am A Opt Image Sci Vis ; 40(6): 1225-1230, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37706776

ABSTRACT

In applications where high sensitivity is required, the internal gain mechanism of avalanche photodiodes can provide a performance advantage relative to p-i-n photodiodes. However, this internal gain mechanism leads to an excess noise that scales with gain. This excess noise term can be minimized by using materials systems in which impact ionization is initiated primarily by one carrier type. Recently, two Sb-based materials systems, AlInAsSb and AlGaAsSb, have exhibited exceptionally low excess noise, particularly for III-V compound materials. There are four important considerations that can impact the excess noise measurements in such low-noise materials. These considerations deal with the excess noise factor calculation method, measurement RF frequency, measurement wavelength, and the gain calculation method. In this paper, each of these factors is discussed, and their implications on excess noise are considered.

2.
Opt Express ; 30(15): 27285-27292, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-36236902

ABSTRACT

Mid-IR is a useful wavelength range for both science and military applications due to its low atmospheric attenuation and ability to be used for passive detection. However, many solutions for detecting light in this spectral region need to be operated at cryogenic temperatures as their required narrow bandgaps suffer from carrier recombination and band-to-band tunneling at room temperature leading to high dark currents. These problems can be alleviated by using a separate absorption, charge, and multiplication avalanche photodiode. We have recently demonstrated such a device with a 3-µm cutoff using Al0.15In0.85As0.77Sb0.23, as the absorber, grown on GaSb. Here we investigate Al0.15In0.85As0.77Sb0.23 as a simple PIN homojunction and provide metrics to aid in future designs using this material. PL spectrum measurements indicate a bandgap of 2.94 µm at 300 K. External quantum efficiencies of 39% and 33% are achieved at 1.55 µm and 2 µm respectively. Between 180 K and 280 K the activation energy is ∼0.22 eV, roughly half the bandgap of Al0.15In0.85As0.77Sb0.23, indicating thermal generation is dominant.

3.
Opt Express ; 30(14): 25262-25276, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-36237060

ABSTRACT

We report the frequency response of Al0.3InAsSb/Al0.7InAsSb nBn photodetectors. The 3-dB bandwidth of the devices varies from ∼ 150 MHz to ∼ 700 MHz with different device diameters and saturates with bias voltage immediately after the device turn on. A new equivalent circuit model is developed to explain the frequency behavior of nBn photodetectors. The simulated bandwidth based on the new equivalent circuit model agrees well with the bandwidth and the microwave scattering parameter measurements. The analysis reveals that the limiting factor of the bandwidth of the nBn photodetector is the large diffusion capacitance caused by the minority carrier lifetime and the device area. Additionally, the bandwidth of the nBn photodetector is barely affected by the photocurrent, which is found to be caused by the barrier structure in the nBn photodetector.

4.
Opt Express ; 30(2): 3047-3054, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35209431

ABSTRACT

We report InGaAs/InP based p-i-n photodiodes with an external quantum efficiency (EQE) above 98% from 1510 nm to 1575 nm. For surface normal photodiodes with a diameter of 80 µm, the measured 3-dB bandwidth is 3 GHz. The saturation current is 30.5 mA, with an RF output power of 9.3 dBm at a bias of -17 V at 3 GHz.

5.
Opt Express ; 29(23): 38939-38945, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34808936

ABSTRACT

We investigate the room-temperature bandwidth performance of AlInAsSb avalanche photodiodes under 2-µm illumination. Parameter characterization denotes RC-limited performance. While measurements indicate a maximum gain-bandwidth product of 44 GHz for a 60-µm-diameter device, we scale this performance to smaller device sizes based on the RC response. For a 15-µm-diameter device, we predict a maximum gain-bandwidth product of approximately 144 GHz based on the reported measurements.

6.
Opt Express ; 28(17): 24379-24388, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32906979

ABSTRACT

Recently, advances in imaging and LIDAR applications have stimulated the development of high-sensitivity receivers that operate at wavelengths of ≥ 2 µm, which has driven research on avalanche photodiodes (APDs) that operate in that spectral region. High quantum efficiency is a key performance parameter for these photodetectors. Increasing the thickness of the absorption region is a straightforward approach to increase the quantum efficiency. However, the primary source of dark current is the narrow-bandgap material used for 2-µm detection. Increasing its thickness results in higher noise. In this paper, we describe two approaches to enhance the quantum efficiency, both of which are superior to a conventional anti-reflection (AR) coating. For normal incidence at 2 µm, finite-difference time-domain (FDTD) simulations show the absorption can be enhanced by more than 100% with a triangular-lattice photonic crystal, and nearly 400% by applying a metal grating. This is achieved by coupling normal incidence light into the laterally propagating modes in the device. Moreover, the significantly higher absorption of the metal grating compared to the photonic crystal is due to the high coupling efficiency provided by the metal grating. This work provides promising methods and physical understanding for enhancing the quantum efficiency for 2-µm detection without increasing absorber thickness, which also enables low dark current and high bandwidth.

7.
Opt Express ; 28(8): 11682-11691, 2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32403674

ABSTRACT

An avalanche photodetector (APD) based on the AlxIn1-xAsySb1-y digital alloy materials system has recently attracted extensive attention due to its extremely low excess noise. Device defects are a critical factor limiting the performance of APDs. In this work, we use low frequency noise spectroscopy (LFNS) to characterize the property of the defects in AlxIn1-xAsySb1-y APDs grown by molecular beam epitaxy (MBE) using the digital alloy technique. Based on low frequency noise spectroscopy results carried out before and after device oxidation, two surface defects and one bulk defect have been identified, which could provide useful information for the future optimization the material growth and device fabrication processes.

8.
Opt Lett ; 44(14): 3538-3541, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31305567

ABSTRACT

We demonstrate a III-V avalanche photodiode (APD) grown by heteroepitaxy on silicon. This InGaAs/InAlAs APD exhibits low dark current, gain >20, external quantum efficiency >40%, and similar low excess noise, k∼0.2, as InAlAs APDs on InP.

9.
Opt Express ; 25(20): 24340-24345, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-29041378

ABSTRACT

We report AlxIn1-xAsySb1-y PIN and Separate Absorption, Charge and Multiplication (SACM) avalanche photodiodes (APDs) with high temperature stability. This work is based on measurements of avalanche breakdown voltage of these devices for temperatures between 223 K and 363 K. Breakdown voltage temperature coefficients are shown to be lower than those of APDs fabricated with other materials with comparable multiplication layer thicknesses.

10.
Biometals ; 24(6): 1005-15, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21584711

ABSTRACT

Red, purple, and blue sepals on selected cultivars of Hydrangea macrophylla were analyzed for their aluminum content. This content was determined to be a function of the sepal color with red sepals possessing 0-10 µg Al/g fresh sepal, purple sepals having 10-40 µg Al/g fresh sepal, and blue sepals containing greater than 40 µg Al/g fresh sepal. Accordingly, the threshold aluminum content needed to change H. macrophylla sepals from red to blue was about 40 µg Al/g fresh sepal. Higher aluminum concentrations were incorporated into the sepals, but this additional aluminum did not affect the intensity or hue of the blue color. These observations agreed with a chemical model proposing that the concentration of the blue Al(3+)-anthocyanin complex reached a maximum when a sufficient excess of aluminum was present. In addition, the visible absorbance spectra of harvested red, purple, and blue sepals were duplicated by Al(3+) and anthocyanin (delphinidin-3-glucoside) mixtures in this model chemical system.


Subject(s)
Aluminum/chemistry , Flowers/chemistry , Hydrangea/anatomy & histology , Hydrangea/chemistry , Pigmentation , Anthocyanins/chemistry , Color , Glucosides/chemistry , Hydrogen-Ion Concentration , Ions/chemistry , Models, Chemical , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...