Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Ecology ; 101(11): e03151, 2020 11.
Article in English | MEDLINE | ID: mdl-32730633

ABSTRACT

In tropical forests, insect herbivores exert significant pressure on plant populations. Adaptation to such pressure is hypothesized to be a driver of high tropical diversity, but direct evidence for local adaptation to herbivory in tropical forests is sparse. At the same time, herbivore pressure has been hypothesized to increase with rainfall in the tropics, which could lead to differences among sites in the degree of local adaptation. To assess the presence of local adaptation and its interaction with rainfall, we compared herbivore damage on seedlings of local vs. nonlocal populations at sites differing in moisture availability in a reciprocal transplant experiment spanning a rainfall gradient in Panama. For 13 native tree species, seeds collected from multiple populations along the rainfall gradient were germinated in a shadehouse and then transplanted to experimental sites within the species range. We tracked the proportion of seedlings attacked over 1.5 yr and quantified the percentage of leaf area damaged at the end of the study. Seedlings originating from local populations were less likely to be attacked and experienced lower amounts of herbivore damage than those from nonlocal populations, but only on the wetter end of the rainfall gradient. However, overall herbivore damage was higher at the drier site compared to wetter sites, contrary to expectation. Taken together, these findings support the idea that herbivory can result in local adaptation within tropical tree species; however, the likelihood of local adaptation varies among sites because of environmentally driven differences in investment in defense or herbivore specialization or both.


Subject(s)
Herbivory , Trees , Animals , Forests , Panama , Tropical Climate
2.
BMC Evol Biol ; 12: 205, 2012 Oct 18.
Article in English | MEDLINE | ID: mdl-23078287

ABSTRACT

BACKGROUND: Mangroves are ecologically important and highly threatened forest communities. Observational and genetic evidence has confirmed the long distance dispersal capacity of water-dispersed mangrove seeds, but less is known about the relative importance of pollen vs. seed gene flow in connecting populations. We analyzed 980 Avicennia germinans for 11 microsatellite loci and 940 Rhizophora mangle for six microsatellite loci and subsampled two non-coding cpDNA regions in order to understand population structure, and gene flow within and among four major estuaries on the Caribbean and Pacific coasts of Panama. RESULTS: Both species showed similar rates of outcrossing (t= 0.7 in A. germinans and 0.8 in R. mangle) and strong patterns of spatial genetic structure within estuaries, although A. germinans had greater genetic structure in nuclear and cpDNA markers (7 demes > 4 demes and Sp= 0.02 > 0.002), and much greater cpDNA diversity (H(d)= 0.8 > 0.2) than R. mangle. The Central American Isthmus serves as an exceptionally strong barrier to gene flow, with high levels nuclear (F(ST)= 0.3-0.5) and plastid (F(ST)= 0.5-0.8) genetic differentiation observed within each species between coasts and no shared cpDNA haplotypes between species on each coast. Finally, evidence of low ratios of pollen to seed dispersal (r = -0.6 in A. germinans and 7.7 in R. mangle), coupled with the strong observed structure in nuclear and plastid DNA among most estuaries, suggests low levels of gene flow in these mangrove species. CONCLUSIONS: We conclude that gene dispersal in mangroves is usually limited within estuaries and that coastal geomorphology and rare long distance dispersal events could also influence levels of structure.


Subject(s)
Avicennia/genetics , Estuaries , Genetic Variation , Rhizophoraceae/genetics , Caribbean Region , Cell Nucleus/genetics , Crosses, Genetic , DNA, Chloroplast/chemistry , DNA, Chloroplast/genetics , Ecosystem , Gene Flow , Geography , Haplotypes , Inbreeding , Linear Models , Microsatellite Repeats/genetics , Molecular Sequence Data , Pacific Ocean , Panama , Pollen/genetics , Seeds/genetics , Sequence Analysis, DNA
3.
Proc Natl Acad Sci U S A ; 105(49): 19084-9, 2008 Dec 09.
Article in English | MEDLINE | ID: mdl-19060189

ABSTRACT

Traits associated with seed dispersal vary tremendously among sympatric wind-dispersed plants. We used two contrasting tropical tree species, seed traps, micrometeorology, and a mechanistic model to evaluate how variation in four key traits affects seed dispersal by wind. The conceptual framework of movement ecology, wherein external factors (wind) interact with internal factors (plant traits) that enable movement and determine when and where movement occurs, fully captures the variable inputs and outputs of wind dispersal models and informs their interpretation. We used model calculations to evaluate the spatial pattern of dispersed seeds for the 16 factorial combinations of four traits. The study species differed dramatically in traits related to the timing of seed release, and a strong species by season interaction affected most aspects of the spatial pattern of dispersed seeds. A rich interplay among plant traits and seasonal differences in atmospheric conditions caused this interaction. Several of the same plant traits are crucial for both seed dispersal and other aspects of life history variation. Observed traits that limit dispersal are likely to be constrained by their life history consequences.


Subject(s)
Ecology/methods , Models, Biological , Seeds/physiology , Tabebuia/growth & development , Wind , Population Dynamics , Seasons , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL