Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Nat Commun ; 15(1): 2175, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467646

ABSTRACT

In the ENSEMBLE randomized, placebo-controlled phase 3 trial (NCT04505722), estimated single-dose Ad26.COV2.S vaccine efficacy (VE) was 56% against moderate to severe-critical COVID-19. SARS-CoV-2 Spike sequences were determined from 484 vaccine and 1,067 placebo recipients who acquired COVID-19. In this set of prespecified analyses, we show that in Latin America, VE was significantly lower against Lambda vs. Reference and against Lambda vs. non-Lambda [family-wise error rate (FWER) p < 0.05]. VE differed by residue match vs. mismatch to the vaccine-insert at 16 amino acid positions (4 FWER p < 0.05; 12 q-value ≤ 0.20); significantly decreased with physicochemical-weighted Hamming distance to the vaccine-strain sequence for Spike, receptor-binding domain, N-terminal domain, and S1 (FWER p < 0.001); differed (FWER ≤ 0.05) by distance to the vaccine strain measured by 9 antibody-epitope escape scores and 4 NTD neutralization-impacting features; and decreased (p = 0.011) with neutralization resistance level to vaccinee sera. VE against severe-critical COVID-19 was stable across most sequence features but lower against the most distant viruses.


Subject(s)
Ad26COVS1 , COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Vaccine Efficacy , Amino Acids , Antibodies, Viral , Antibodies, Neutralizing
2.
NPJ Vaccines ; 8(1): 176, 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37952003

ABSTRACT

Seasonal influenza vaccines must be updated annually and suboptimally protect against strains mismatched to the selected vaccine strains. We previously developed a subunit vaccine antigen consisting of a stabilized trimeric influenza A group 1 hemagglutinin (H1) stem protein that elicits broadly neutralizing antibodies. Here, we further optimized the stability and manufacturability of the H1 stem antigen (H1 stem v2, also known as INFLUENZA G1 mHA) and characterized its formulation and potency with different adjuvants in vitro and in animal models. The recombinant H1 stem antigen (50 µg) was administered to influenza-naïve non-human primates either with aluminum hydroxide [Al(OH)3] + NaCl, AS01B, or SLA-LSQ formulations at week 0, 8 and 34. These SLA-LSQ formulations comprised of varying ratios of the synthetic TLR4 agonist 'second generation synthetic lipid adjuvant' (SLA) with liposomal QS-21 (LSQ). A vaccine formulation with aluminum hydroxide or SLA-LSQ (starting at a 10:25 µg ratio) induced HA-specific antibodies and breadth of neutralization against a panel of influenza A group 1 pseudoviruses, comparable with vaccine formulated with AS01B, four weeks after the second immunization. A formulation with SLA-LSQ in a 5:2 µg ratio contained larger fused or aggregated liposomes and induced significantly lower humoral responses. Broadly HA stem-binding antibodies were detectable for the entire period after the second vaccine dose up to week 34, after which they were boosted by a third vaccine dose. These findings inform about potential adjuvant formulations in clinical trials with an H1 stem-based vaccine candidate.

3.
Vaccine ; 40(32): 4403-4411, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35667914

ABSTRACT

BACKGROUND: Ad26.COV2.S is a well-tolerated and effective vaccine against COVID-19. We evaluated durability of anti-SARS-CoV-2 antibodies elicited by single-dose Ad26.COV2.S and the impact of boosting. METHODS: In randomized, double-blind, placebo-controlled, phase 1/2a and phase 2 trials, participants received single-dose Ad26.COV2.S (5 × 1010 viral particles [vp]) followed by booster doses of 5 × 1010 vp or 1.25 × 1010 vp. Neutralizing antibody levels were determined by a virus neutralization assay (VNA) approximately 8-9 months after dose 1. Binding and neutralizing antibody levels were evaluated by an enzyme-linked immunosorbent assay and pseudotyped VNA 6 months after dose 1 and 7 and 28 days after boosting. RESULTS: Data were analyzed from phase 1/2a participants enrolled from 22 July-18 December 2020 (Cohort 1a, 18-55 years [y], N = 25; Cohort 2a, 18-55y, N = 17; Cohort 3, ≥65y, N = 22), and phase 2 participants from 14 to 22 September 2020 (18-55y and ≥ 65y, N = 73). Single-dose Ad26.COV2.S elicited stable neutralizing antibodies for at least 8-9 months and stable binding antibodies for at least 6 months, irrespective of age. A 5 × 1010 vp 2-month booster dose increased binding antibodies by 4.9- to 6.2-fold 14 days post-boost versus 28 days after initial immunization. A 6-month booster elicited a steep and robust 9-fold increase in binding antibody levels 7 days post-boost. A 5.0-fold increase in neutralizing antibodies was observed by 28 days post-boost for the Beta variant. A 1.25 × 1010 vp 6-month booster elicited a 3.6-fold increase in binding antibody levels at 7 days post-boost versus pre-boost, with a similar magnitude of post-boost responses in both age groups. CONCLUSIONS: Single-dose Ad26.COV2.S elicited durable antibody responses for at least 8 months and elicited immune memory. Booster-elicited binding and neutralizing antibody responses were rapid and robust, even with a quarter vaccine dose, and stronger with a longer interval since primary vaccination. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04436276, NCT04535453.


Subject(s)
Ad26COVS1 , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Randomized Controlled Trials as Topic , SARS-CoV-2
4.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35131851

ABSTRACT

For an efficacious vaccine immunogen, influenza hemagglutinin (HA) needs to maintain a stable quaternary structure, which is contrary to the inherently dynamic and metastable nature of class I fusion proteins. In this study, we stabilized HA with three substitutions within its pH-sensitive regions where the refolding starts. An X-ray structure reveals how these substitutions stabilize the intersubunit ß-sheet in the base and form an interprotomeric aliphatic layer across the stem while the native prefusion HA fold is retained. The identification of the stabilizing substitutions increases our understanding of how the pH sensitivity is structurally accomplished in HA and possibly other pH-sensitive class I fusion proteins. Our stabilization approach in combination with the occasional back mutation of rare amino acids to consensus results in well-expressing stable trimeric HAs. This repair and stabilization approach, which proves broadly applicable to all tested influenza A HAs of group 1 and 2, will improve the developability of influenza vaccines based on different types of platforms and formats and can potentially improve efficacy.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinins/genetics , Amino Acids/genetics , Cell Line , Humans , Hydrogen-Ion Concentration , Influenza Vaccines/genetics , Influenza, Human/virology , Mutation/genetics , Protein Conformation, beta-Strand/genetics
5.
J Exp Med ; 218(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-33909009

ABSTRACT

Safe and effective coronavirus disease-19 (COVID-19) vaccines are urgently needed to control the ongoing pandemic. While single-dose vaccine regimens would provide multiple advantages, two doses may improve the magnitude and durability of immunity and protective efficacy. We assessed one- and two-dose regimens of the Ad26.COV2.S vaccine candidate in adult and aged nonhuman primates (NHPs). A two-dose Ad26.COV2.S regimen induced higher peak binding and neutralizing antibody responses compared with a single dose. In one-dose regimens, neutralizing antibody responses were stable for at least 14 wk, providing an early indication of durability. Ad26.COV2.S induced humoral immunity and T helper cell (Th cell) 1-skewed cellular responses in aged NHPs that were comparable to those in adult animals. Aged Ad26.COV2.S-vaccinated animals challenged 3 mo after dose 1 with a SARS-CoV-2 spike G614 variant showed near complete lower and substantial upper respiratory tract protection for both regimens. Neutralization of variants of concern by NHP sera was reduced for B.1.351 lineages while maintained for the B.1.1.7 lineage independent of Ad26.COV2.S vaccine regimen.


Subject(s)
Adenoviridae/immunology , Aging/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Body Temperature , Bronchoalveolar Lavage , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/prevention & control , COVID-19/virology , Dose-Response Relationship, Immunologic , Female , Immunity, Humoral , Kinetics , Lung/pathology , Lung/virology , Macaca mulatta , Male , Spike Glycoprotein, Coronavirus/metabolism , Treatment Outcome , Vaccination , Viral Load
6.
Science ; 363(6431)2019 03 08.
Article in English | MEDLINE | ID: mdl-30846569

ABSTRACT

Recent characterization of broadly neutralizing antibodies (bnAbs) against influenza virus identified the conserved hemagglutinin (HA) stem as a target for development of universal vaccines and therapeutics. Although several stem bnAbs are being evaluated in clinical trials, antibodies are generally unsuited for oral delivery. Guided by structural knowledge of the interactions and mechanism of anti-stem bnAb CR6261, we selected and optimized small molecules that mimic the bnAb functionality. Our lead compound neutralizes influenza A group 1 viruses by inhibiting HA-mediated fusion in vitro, protects mice against lethal and sublethal influenza challenge after oral administration, and effectively neutralizes virus infection in reconstituted three-dimensional cell culture of fully differentiated human bronchial epithelial cells. Cocrystal structures with H1 and H5 HAs reveal that the lead compound recapitulates the bnAb hotspot interactions.


Subject(s)
Antibodies, Neutralizing/chemistry , Biomimetic Materials/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza, Human/prevention & control , Piperazines/pharmacology , Pyridines/pharmacology , Tetrazoles/pharmacology , Viral Fusion Protein Inhibitors/pharmacology , Virus Internalization/drug effects , Administration, Oral , Animals , Biomimetic Materials/administration & dosage , Biomimetic Materials/pharmacokinetics , Bronchi/virology , Cells, Cultured , Dogs , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Madin Darby Canine Kidney Cells , Mice , Piperazines/administration & dosage , Piperazines/pharmacokinetics , Pyridines/administration & dosage , Pyridines/pharmacokinetics , Respiratory Mucosa/virology , Tetrazoles/administration & dosage , Tetrazoles/pharmacokinetics , Viral Fusion Protein Inhibitors/administration & dosage , Viral Fusion Protein Inhibitors/pharmacokinetics
7.
Science ; 362(6414): 598-602, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30385580

ABSTRACT

Broadly neutralizing antibodies against highly variable pathogens have stimulated the design of vaccines and therapeutics. We report the use of diverse camelid single-domain antibodies to influenza virus hemagglutinin to generate multidomain antibodies with impressive breadth and potency. Multidomain antibody MD3606 protects mice against influenza A and B infection when administered intravenously or expressed locally from a recombinant adeno-associated virus vector. Crystal and single-particle electron microscopy structures of these antibodies with hemagglutinins from influenza A and B viruses reveal binding to highly conserved epitopes. Collectively, our findings demonstrate that multidomain antibodies targeting multiple epitopes exhibit enhanced virus cross-reactivity and potency. In combination with adeno-associated virus-mediated gene delivery, they may provide an effective strategy to prevent infection with influenza virus and other highly variable pathogens.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Camelids, New World/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A virus/immunology , Influenza B virus/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/chemistry , Antibodies, Viral/ultrastructure , Crystallography, X-Ray , Dogs , Female , Immunodominant Epitopes/chemistry , Immunodominant Epitopes/genetics , Immunodominant Epitopes/immunology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Neutralization Tests , Peptide Library , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Single-Domain Antibodies
8.
Proc Natl Acad Sci U S A ; 111(1): 445-50, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24335589

ABSTRACT

The discovery and characterization of broadly neutralizing antibodies (bnAbs) against influenza viruses have raised hopes for the development of monoclonal antibody (mAb)-based immunotherapy and the design of universal influenza vaccines. Only one human bnAb (CR8020) specifically recognizing group 2 influenza A viruses has been previously characterized that binds to a highly conserved epitope at the base of the hemagglutinin (HA) stem and has neutralizing activity against H3, H7, and H10 viruses. Here, we report a second group 2 bnAb, CR8043, which was derived from a different germ-line gene encoding a highly divergent amino acid sequence. CR8043 has in vitro neutralizing activity against H3 and H10 viruses and protects mice against challenge with a lethal dose of H3N2 and H7N7 viruses. The crystal structure and EM reconstructions of the CR8043-H3 HA complex revealed that CR8043 binds to a site similar to the CR8020 epitope but uses an alternative angle of approach and a distinct set of interactions. The identification of another antibody against the group 2 stem epitope suggests that this conserved site of vulnerability has great potential for design of therapeutics and vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Influenza A virus/chemistry , Animals , Antibodies/chemistry , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Chromatography, Gel , Enzyme-Linked Immunosorbent Assay , Epitopes/chemistry , Female , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Immunologic Memory , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Kinetics , Mice , Mice, Inbred BALB C , Microscopy, Electron , Models, Molecular , Molecular Conformation , Species Specificity
9.
Science ; 337(6100): 1343-8, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22878502

ABSTRACT

Identification of broadly neutralizing antibodies against influenza A viruses has raised hopes for the development of monoclonal antibody-based immunotherapy and "universal" vaccines for influenza. However, a substantial part of the annual flu burden is caused by two cocirculating, antigenically distinct lineages of influenza B viruses. Here, we report human monoclonal antibodies, CR8033, CR8071, and CR9114, that protect mice against lethal challenge from both lineages. Antibodies CR8033 and CR8071 recognize distinct conserved epitopes in the head region of the influenza B hemagglutinin (HA), whereas CR9114 binds a conserved epitope in the HA stem and protects against lethal challenge with influenza A and B viruses. These antibodies may inform on development of monoclonal antibody-based treatments and a universal flu vaccine for all influenza A and B viruses.


Subject(s)
Antibodies, Monoclonal/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunodominant Epitopes/immunology , Influenza B virus/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Conserved Sequence , Humans , Immunodominant Epitopes/chemistry , Mice , Molecular Sequence Data , Neutralization Tests , Protein Conformation
10.
Science ; 333(6044): 843-50, 2011 Aug 12.
Article in English | MEDLINE | ID: mdl-21737702

ABSTRACT

Current flu vaccines provide only limited coverage against seasonal strains of influenza viruses. The identification of V(H)1-69 antibodies that broadly neutralize almost all influenza A group 1 viruses constituted a breakthrough in the influenza field. Here, we report the isolation and characterization of a human monoclonal antibody CR8020 with broad neutralizing activity against most group 2 viruses, including H3N2 and H7N7, which cause severe human infection. The crystal structure of Fab CR8020 with the 1968 pandemic H3 hemagglutinin (HA) reveals a highly conserved epitope in the HA stalk distinct from the epitope recognized by the V(H)1-69 group 1 antibodies. Thus, a cocktail of two antibodies may be sufficient to neutralize most influenza A subtypes and, hence, enable development of a universal flu vaccine and broad-spectrum antibody therapies.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A virus/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , Antibody Specificity , Antigens, Viral/chemistry , Antigens, Viral/genetics , Binding Sites, Antibody , Conserved Sequence , Crystallography, X-Ray , Epitopes/immunology , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H7N7 Subtype/genetics , Influenza A Virus, H7N7 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/therapy , Mice , Models, Molecular , Molecular Sequence Data , Mutation , Neutralization Tests , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Protein Conformation
11.
J Virol ; 83(13): 6494-507, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19386704

ABSTRACT

West Nile virus (WNV) is a neurotropic flavivirus that is now a primary cause of epidemic encephalitis in North America. Studies of mice have demonstrated that the humoral immune response against WNV limits primary infection and protects against a secondary challenge. The most-potent neutralizing mouse monoclonal antibodies (MAbs) recognize an epitope on the lateral ridge of domain III (DIII-lr) of the envelope (E) protein. However, studies with serum from human patients show that antibodies against the DIII-lr epitope comprise, at best, a minor component of the human anti-WNV antibody response. Herein, we characterize in detail two WNV-specific human MAbs, CR4348 and CR4354, that were isolated from B-cell populations of convalescent patients. These MAbs strongly neutralize WNV infection of cultured cells, protect mice against lethal infection in vivo, and yet poorly recognize recombinant forms of the E protein. Instead, CR4348 and CR4354 bind determinants on intact WNV virions and subviral particles in a pH-sensitive manner, and neutralization is altered by mutations at the dimer interface in domain II and the hinge between domains I and II, respectively. CR4348 and CR4354 human MAbs neutralize infection at a postattachment step in the viral life cycle, likely by inhibiting acid-induced fusion within the endosome.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , West Nile Fever/prevention & control , West Nile virus/immunology , Animals , Antibody Specificity/immunology , B-Lymphocytes/immunology , Cell Line , Epitope Mapping , Humans , Mice , Mice, Inbred C57BL , Neutralization Tests , Protein Structure, Tertiary , Recombinant Proteins/immunology , Substrate Specificity , Viral Envelope Proteins/immunology , West Nile Fever/immunology , West Nile virus/genetics
12.
Science ; 324(5924): 246-51, 2009 Apr 10.
Article in English | MEDLINE | ID: mdl-19251591

ABSTRACT

Influenza virus presents an important and persistent threat to public health worldwide, and current vaccines provide immunity to viral isolates similar to the vaccine strain. High-affinity antibodies against a conserved epitope could provide immunity to the diverse influenza subtypes and protection against future pandemic viruses. Cocrystal structures were determined at 2.2 and 2.7 angstrom resolutions for broadly neutralizing human antibody CR6261 Fab in complexes with the major surface antigen (hemagglutinin, HA) from viruses responsible for the 1918 H1N1 influenza pandemic and a recent lethal case of H5N1 avian influenza. In contrast to other structurally characterized influenza antibodies, CR6261 recognizes a highly conserved helical region in the membrane-proximal stem of HA1 and HA2. The antibody neutralizes the virus by blocking conformational rearrangements associated with membrane fusion. The CR6261 epitope identified here should accelerate the design and implementation of improved vaccines that can elicit CR6261-like antibodies, as well as antibody-based therapies for the treatment of influenza.


Subject(s)
Antibodies, Viral/immunology , Antibody Affinity , Antigens, Viral/immunology , Binding Sites, Antibody , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunoglobulin Fab Fragments/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/immunology , Antibodies, Viral/chemistry , Antigens, Viral/chemistry , Crystallization , Crystallography, X-Ray , Epitopes/immunology , Glycosylation , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Hydrogen Bonding , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Immunoglobulin Fab Fragments/chemistry , Influenza Vaccines , Membrane Fusion , Models, Molecular , Neutralization Tests , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary
13.
PLoS One ; 3(12): e3942, 2008.
Article in English | MEDLINE | ID: mdl-19079604

ABSTRACT

BACKGROUND: The hemagglutinin (HA) glycoprotein is the principal target of protective humoral immune responses to influenza virus infections but such antibody responses only provide efficient protection against a narrow spectrum of HA antigenic variants within a given virus subtype. Avian influenza viruses such as H5N1 are currently panzootic and pose a pandemic threat. These viruses are antigenically diverse and protective strategies need to cross protect against diverse viral clades. Furthermore, there are 16 different HA subtypes and no certainty the next pandemic will be caused by an H5 subtype, thus it is important to develop prophylactic and therapeutic interventions that provide heterosubtypic protection. METHODS AND FINDINGS: Here we describe a panel of 13 monoclonal antibodies (mAbs) recovered from combinatorial display libraries that were constructed from human IgM(+) memory B cells of recent (seasonal) influenza vaccinees. The mAbs have broad heterosubtypic neutralizing activity against antigenically diverse H1, H2, H5, H6, H8 and H9 influenza subtypes. Restriction to variable heavy chain gene IGHV1-69 in the high affinity mAb panel was associated with binding to a conserved hydrophobic pocket in the stem domain of HA. The most potent antibody (CR6261) was protective in mice when given before and after lethal H5N1 or H1N1 challenge. CONCLUSIONS: The human monoclonal CR6261 described in this study could be developed for use as a broad spectrum agent for prophylaxis or treatment of human or avian influenza infections without prior strain characterization. Moreover, the CR6261 epitope could be applied in targeted vaccine strategies or in the design of novel antivirals. Finally our approach of screening the IgM(+) memory repertoire could be applied to identify conserved and functionally relevant targets on other rapidly evolving pathogens.


Subject(s)
Antibodies, Monoclonal/immunology , B-Lymphocytes/virology , Immunoglobulin M/immunology , Immunologic Memory/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza, Human/prevention & control , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/isolation & purification , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Antibody Specificity/immunology , B-Lymphocytes/immunology , Binding Sites, Antibody , Cross Reactions , Dogs , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Hydrophobic and Hydrophilic Interactions , Influenza, Human/immunology , Influenza, Human/virology , Mice , Molecular Sequence Data , Neutralization Tests , Peptide Library , Protein Structure, Tertiary , Tissue Donors
14.
J Virol ; 80(14): 6982-92, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16809304

ABSTRACT

Monoclonal antibodies (MAbs) neutralizing West Nile Virus (WNV) have been shown to protect against infection in animal models and have been identified as a correlate of protection in WNV vaccine studies. In the present study, antibody repertoires from three convalescent WNV-infected patients were cloned into an scFv phage library, and 138 human MAbs binding to WNV were identified. One hundred twenty-one MAbs specifically bound to the viral envelope (E) protein and four MAbs to the premembrane (prM) protein. Enzyme-linked immunosorbent assay-based competitive-binding assays with representative E protein-specific MAbs demonstrated that 24/51 (47%) bound to domain II while only 4/51 (8%) targeted domain III. In vitro neutralizing activity was demonstrated for 12 MAbs, and two of these, CR4374 and CR4353, protected mice from lethal WNV challenge at 50% protective doses of 12.9 and 357 mug/kg of body weight, respectively. Our data analyzing three infected individuals suggest that the human anti-WNV repertoire after natural infection is dominated by nonneutralizing or weakly neutralizing MAbs binding to domain II of the E protein, while domain III-binding MAbs able to potently neutralize WNV in vitro and in vivo are rare.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Viral Envelope Proteins/immunology , West Nile Fever/immunology , West Nile virus/immunology , Animals , Antibodies, Monoclonal/genetics , Antibodies, Viral/genetics , Antibody Specificity/genetics , Antibody Specificity/immunology , Binding Sites, Antibody/genetics , Binding Sites, Antibody/immunology , Cloning, Molecular , Humans , Mice , Protein Structure, Tertiary
15.
J Immunol Methods ; 302(1-2): 68-77, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15992810

ABSTRACT

Application of antibody phage display to the identification of cell surface antigens with restricted expression patterns is often complicated by the inability to demonstrate specific binding to a certain cell type. The specificity of an antibody can only be properly assessed when the antibody is of sufficient high affinity to detect low-density antigens on cell surfaces. Therefore, a robust and simple assay for the prediction of relative antibody affinities was developed and compared to data obtained using surface plasmon resonance (SPR) technology. A panel of eight anti-CD46 antibody fragments with different affinities was selected from phage display libraries and reformatted into complete human IgG1 molecules. SPR was used to determine K(D) values for these antibodies. The association and dissociation of the antibodies for binding to CD46 expressed on cell surfaces were analysed using FACS-based assays. We show that ranking of the antibodies based on FACS data correlates well with ranking based on K(D) values as measured by SPR and can therefore be used to discriminate between high- and low-affinity antibodies. Finally, we show that a low-affinity antibody may only detect high expression levels of a surface marker while failing to detect lower expression levels of this molecule, which may lead to a false interpretation of antibody specificity.


Subject(s)
Antibodies/metabolism , Antibody Affinity , Bacteriophages/immunology , Flow Cytometry/methods , Peptide Library , Animals , Antigens, CD/immunology , Binding Sites, Antibody , Humans , Membrane Cofactor Protein , Membrane Glycoproteins/immunology , Mice , Surface Plasmon Resonance
16.
Eur J Immunol ; 35(7): 2131-45, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15971273

ABSTRACT

Antibody phage display technology was used to identify human monoclonal antibodies that neutralize rabies virus (RV). A phage repertoire was constructed using antibody genes harvested from the blood of vaccinated donors. Selections using this repertoire and three different antigen formats of the RV glycoprotein (gp) resulted in the identification of 147 unique antibody fragments specific for the RV gp. Analysis of the DNA sequences of these antibodies demonstrated a large variation in the heavy- and light-chain germ-line gene usage, suggesting that a broad antibody repertoire was selected. The single-chain variable fragment (scFv) antibodies were tested in vitro for RV neutralization, resulting in 39 specificities that neutralize the virus. Of the scFv clones, 21 were converted into full-length human IgG(1) format. Analysis of viral escape variants and binding competition experiments indicated that the majority of the neutralizing antibodies are directed against antigenic site III of the RV gp. The obtained specificities expand the set of human anti-RV antibodies eligible for inclusion in an antibody cocktail aimed for use in rabies post-exposure prophylaxis.


Subject(s)
Antibodies, Viral/analysis , Antigens, Viral/immunology , Glycoproteins/immunology , Peptide Library , Rabies virus/immunology , Viral Envelope Proteins/immunology , Amino Acid Sequence , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/metabolism , Antibodies, Viral/biosynthesis , Antibodies, Viral/metabolism , Humans , Immunoglobulin Fragments/analysis , Immunoglobulin Fragments/biosynthesis , Immunoglobulin G/analysis , Immunoglobulin G/biosynthesis , Immunoglobulin G/metabolism , Immunoglobulin Variable Region/analysis , Immunoglobulin Variable Region/biosynthesis , Molecular Sequence Data , Peptide Mapping
17.
J Virol ; 79(8): 4672-8, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15795253

ABSTRACT

Anti-rabies virus immunoglobulin combined with rabies vaccine protects humans from lethal rabies infections. For cost and safety reasons, replacement of the human or equine polyclonal immunoglobulin is advocated, and the use of rabies virus-specific monoclonal antibodies (MAbs) is recommended. We produced two previously described potent rabies virus-neutralizing human MAbs, CR57 and CRJB, in human PER.C6 cells. The two MAbs competed for binding to rabies virus glycoprotein. Using CR57 and a set of 15-mer overlapping peptides covering the glycoprotein ectodomain, a neutralization domain was identified between amino acids (aa) 218 and 240. The minimal binding region was identified as KLCGVL (aa 226 to 231), with key residues K-CGV- identified by alanine replacement scanning. The critical binding region of this novel nonconformational rabies virus epitope is highly conserved within rabies viruses of genotype 1. Subsequently, we generated six rabies virus variants escaping neutralization by CR57 and six variants escaping CRJB. The CR57 escape mutants were only partially covered by CRJB, and all CRJB-resistant variants completely escaped neutralization by CR57. Without exception, the CR57-resistant variants showed a mutation at key residues within the defined minimal binding region, while the CRJB escape viruses showed a single mutation distant from the CR57 epitope (N182D) combined with mutations in the CR57 epitope. The competition between CR57 and CRJB, the in vitro escape profile, and the apparent overlap between the recognized epitopes argues against including both CR57 and CRJB in a MAb cocktail aimed at replacing classical immunoglobulin preparations.


Subject(s)
Antibodies, Monoclonal/immunology , Rabies virus/genetics , Rabies virus/immunology , Rabies/immunology , Amino Acid Sequence , Animals , Cell Line, Tumor , Conserved Sequence , Humans , Immunoglobulin G/immunology , Mice , Molecular Sequence Data , Neuroblastoma , Neutralization Tests , Sequence Alignment , Sequence Homology, Amino Acid
18.
J Virol ; 79(3): 1635-44, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15650189

ABSTRACT

Human monoclonal antibodies (MAbs) were selected from semisynthetic antibody phage display libraries by using whole irradiated severe acute respiratory syndrome (SARS) coronavirus (CoV) virions as target. We identified eight human MAbs binding to virus and infected cells, six of which could be mapped to two SARS-CoV structural proteins: the nucleocapsid (N) and spike (S) proteins. Two MAbs reacted with N protein. One of the N protein MAbs recognized a linear epitope conserved between all published human and animal SARS-CoV isolates, and the other bound to a nonlinear N epitope. These two N MAbs did not compete for binding to SARS-CoV. Four MAbs reacted with the S glycoprotein, and three of these MAbs neutralized SARS-CoV in vitro. All three neutralizing anti-S MAbs bound a recombinant S1 fragment comprising residues 318 to 510, a region previously identified as the SARS-CoV S receptor binding domain; the nonneutralizing MAb did not. Two strongly neutralizing anti-S1 MAbs blocked the binding of a recombinant S fragment (residues 1 to 565) to SARS-CoV-susceptible Vero cells completely, whereas a poorly neutralizing S1 MAb blocked binding only partially. The MAb ability to block S1-receptor binding and the level of neutralization of the two strongly neutralizing S1 MAbs correlated with the binding affinity to the S1 domain. Finally, epitope mapping, using recombinant S fragments (residues 318 to 510) containing naturally occurring mutations, revealed the importance of residue N479 for the binding of the most potent neutralizing MAb, CR3014. The complete set of SARS-CoV MAbs described here may be useful for diagnosis, chemoprophylaxis, and therapy of SARS-CoV infection and disease.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Membrane Glycoproteins/immunology , Nucleocapsid Proteins/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Viral Envelope Proteins/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/genetics , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antibody Specificity , Binding Sites , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins , Epitope Mapping , Humans , Molecular Sequence Data , Neutralization Tests , Spike Glycoprotein, Coronavirus , Vero Cells
19.
Eur J Cancer ; 41(1): 178-87, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15618003

ABSTRACT

Tumour-associated cell surface markers are potential targets for antibody-based therapies. We have obtained a panel of myeloid cell binding single chain variable fragments (scFv) by applying phage display selection on myeloid cell lines followed by a selection round on freshly isolated acute myeloid leukaemia (AML) blasts using flow cytometry. To identify the target antigens, the scFv were recloned and expressed in an IgG(1) format and tested for their ability to immunoprecipitate cell surface proteins. The IgGs that reacted with distinct cell membrane extractable proteins were used in large-scale affinity purification of the target antigen followed by mass-spectrometry-based identification. Well-characterised cell surface antigens, such as leukocyte antigen-related receptor protein tyrosine phosphatase (LAR PTP) and activated leukocyte adhesion molecule (ALCAM) in addition to several unknown proteins, like ATAD3A, were identified. These experiments demonstrate that phage antibody selection in combination with affinity chromatography and mass spectrometry can be exploited successfully to identify novel antibody target molecules on malignant cells.


Subject(s)
Antigens, Neoplasm/analysis , Leukemia, Myeloid/genetics , Proteomics , Activated-Leukocyte Cell Adhesion Molecule , Acute Disease , Antigens, Surface/metabolism , Bacteriophages/metabolism , Cell Line, Tumor , Clone Cells , Flow Cytometry/methods , Humans , Immunoglobulin G/metabolism , Leukocytes, Mononuclear/metabolism , Mass Spectrometry , Myeloid Cells/metabolism , Transfection
20.
Cancer Res ; 64(22): 8443-50, 2004 Nov 15.
Article in English | MEDLINE | ID: mdl-15548716

ABSTRACT

Acute myeloid leukemia (AML) has a poor prognosis due to treatment-resistant relapses. A humanized anti-CD33 antibody (Mylotarg) showed a limited response rate in relapsed AML. To discover novel AML antibody targets, we selected a panel of single chain Fv fragments using phage display technology combined with flow cytometry on AML tumor samples. One selected single chain Fv fragment broadly reacted with AML samples and with myeloid cell lineages within peripheral blood. Expression cloning identified the antigen recognized as C-type lectin-like molecule-1 (CLL-1), a previously undescribed transmembrane glycoprotein. CLL-1 expression was analyzed with a human anti-CLL-1 antibody that was generated from the single chain Fv fragment. CLL-1 is restricted to the hematopoietic lineage, in particular to myeloid cells present in peripheral blood and bone marrow. CLL-1 is absent on uncommitted CD34(+)/CD38(-) or CD34(+)/CD33(-) stem cells and present on subsets of CD34(+)/CD38(+) or CD34(+)/CD33(+) progenitor cells. CLL-1 is not expressed in any other tissue. In contrast, analysis of primary AMLs demonstrated CLL-1 expression in 92% (68 of 74) of the samples. As an AML marker, CLL-1 was able to complement CD33, because 67% (8 of 12) of the CD33(-) AMLs expressed CLL-1. CLL-1 showed variable expression (10-60%) in CD34(+) cells in chronic myelogenous leukemia and myelodysplastic syndrome but was absent in 12 of 13 cases of acute lymphoblastic leukemia. The AML reactivity combined with the restricted expression on normal cells identifies CLL-1 as a novel potential target for AML treatment.


Subject(s)
Biomarkers, Tumor/metabolism , Lectins, C-Type/metabolism , Leukemia, Myeloid/metabolism , Acute Disease , Amino Acid Sequence , Base Sequence , Cell Membrane/metabolism , Flow Cytometry , Humans , Lectins, C-Type/chemistry , Lectins, C-Type/genetics , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...