Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 70, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167542

ABSTRACT

Chemotherapy is a powerful means of cancer treatment but its efficacy is compromised by the emergence of multidrug resistance (MDR), mainly linked to the efflux transporter ABCB1/P-glycoprotein (P-gp). Based on the chemical structure of betulin, identified in our previous work as an effective modulator of the P-gp function, a series of analogs were designed, synthesized and evaluated as a source of novel inhibitors. Compounds 6g and 6i inhibited rhodamine 123 efflux in the P-gp overexpressed leukemia cells, K562/Dox, at concentrations of 0.19 µM and 0.39 µM, respectively, and increased the intracellular accumulation of doxorubicin at the submicromolar concentration of 0.098 µM. Compounds 6g and 6i were able to restore the sensitivity of K562/Dox to Dox at 0.024 µM and 0.19 µM, respectively. Structure-activity relationship analysis and molecular modeling revealed important information about the structural features conferring activity. All the active compounds fitted in a specific region involving mainly transmembrane helices (TMH) 4-6 from one homologous half and TMH 7 and 12 from the other, also showing close contacts with TMH 6 and 12. Compounds that bound preferentially to another region were inactive, regardless of their free energy of binding. It should be noted that compounds 6g and 6i were devoid of toxic effects against peripheral blood mononuclear normal cells and erythrocytes. The data obtained indicates that both compounds might be proposed as scaffolds for obtaining promising P-gp inhibitors for overcoming MDR.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Antineoplastic Agents , Humans , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Leukocytes, Mononuclear/metabolism , Drug Resistance, Neoplasm , K562 Cells , ATP Binding Cassette Transporter, Subfamily B/metabolism , Doxorubicin/pharmacology , Doxorubicin/metabolism
2.
Cells ; 12(3)2023 02 02.
Article in English | MEDLINE | ID: mdl-36766836

ABSTRACT

Inflammation and oxidative and nitrosative stress are involved in the pathogenesis of proliferative retinopathies (PR). In PR, a loss of balance between pro-angiogenic and anti-angiogenic factors favors the secretion of vascular endothelial growth factor (VEGF). This vascular change results in alterations in the blood-retinal barrier, with extravasation of plasma proteins such as α2-macroglobulin (α2M) and gliosis in Müller glial cells (MGCs, such as MIO-M1). It is well known that MGCs play important roles in healthy and sick retinas, including in PR. Nitro-fatty acids are electrophilic lipid mediators with anti-inflammatory and cytoprotective properties. Our aim was to investigate whether nitro-oleic acid (NO2-OA) is beneficial against oxidative stress, gliosis, and the pro-angiogenic response in MGCs. Pure synthetic NO2-OA increased HO-1 expression in a time- and concentration-dependent manner, which was abrogated by the Nrf2 inhibitor trigonelline. In response to phorbol 12-myristate 13-acetate (PMA) and lipopolysaccharide (LPS), NO2-OA prevented the ROS increase and reduced the gliosis induced by α2M. Finally, when hypoxic MGCs were incubated with NO2-OA, the increase in VEGF mRNA expression was not affected, but under hypoxia and inflammation (IL-1ß), NO2-OA significantly reduced VEGF mRNA levels. Furthermore, NO2-OA inhibited endothelial cell (BAEC) tubulogenesis. Our results highlight NO2-OA's protective effect on oxidative damage, gliosis; and the exacerbated pro-angiogenic response in MGCs.


Subject(s)
Nitrogen Dioxide , Vascular Endothelial Growth Factor A , Humans , Nitrogen Dioxide/metabolism , Nitrogen Dioxide/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Ependymoglial Cells/metabolism , Gliosis/metabolism , Oxidative Stress , Hypoxia/metabolism , Inflammation/metabolism , RNA, Messenger/metabolism
3.
Front Pharmacol ; 13: 1007790, 2022.
Article in English | MEDLINE | ID: mdl-36313304

ABSTRACT

Background: Tumor angiogenesis is considered as a crucial pathologic feature of cancer with a key role in multidrug resistance (MDR). Adverse effects of the currently available drugs and the development of resistance to these remain as the hardest obstacles to defeat. Objetive: This work explores flora from Argentina as a source of new chemical entities with antiangiogenic activity. Methods: Tube formation assay using bovine aortic endothelial cells (BAECs) was the experiment of choice to assess antiangiogenic activity. The effect of the pure compound in cell invasiveness was investigated through the trans-well migration assay. The inhibitory effect of the pure compound on VEGFR-2 and PKC isozymes α and ß2 activation was studied by molecular and massive dynamic simulations. Cytotoxicity on peripheral blood mononuclear cells and erythrocyte cells was evaluated by means of MTT and hemolysis assay, respectively. In silico prediction of pharmacological properties (ADME) and evaluation of drug-likeness features were performed using the SwissADME online tool. Results: Among the plants screened, T. minuta, showed an outstanding effect with an IC50 of 33.6 ± 3.4 µg/ml. Bio-guided isolation yielded the terthiophene α-terthienylmethanol as its active metabolite. This compound inhibited VEGF-induced tube formation with an IC50 of 2.7 ± 0.4 µM and significantly impaired the invasiveness of bovine aortic endothelial cells (BAECs) as well as of the highly aggressive breast cancer cells, MDA-MB-231, when tested at 10 µM. Direct VEGFR-2 and PKC inhibition were both explored by means of massive molecular dynamics simulations. The results obtained validated the inhibitory effect on protein kinase C (PKC) isozymes α and ß2 as the main mechanism underlying its antiangiogenic activity. α-terthienylmethanol showed no evidence of toxicity against peripheral blood mononuclear and erythrocyte cells. Conclusion: These findings support this thiophene as a promising antiangiogenic phytochemical to fight against several types of cancer mainly those with MDR phenotype.

4.
Front Cell Dev Biol ; 10: 855178, 2022.
Article in English | MEDLINE | ID: mdl-35300418

ABSTRACT

Hypoxia and hypoxia-reoxygenation are frequently developed through the course of many retinal diseases of different etiologies. Müller glial cells (MGCs), together with microglia and astrocytes, participate firstly in response to the injury and later in the repair of tissue damage. New pharmacological strategies tend to modulate MGCs ability to induce angiogenesis and gliosis in order to accelerate the recovery stage. In this article, we investigated the variation in autophagy flux under hypoxia during 4 h, employing both gas culture chamber (1% O2) and chemical (CoCl2) hypoxia, and also in hypoxia-reoxygenation. Then, we delineated a strategy to induce autophagy with Rapamycin and Resveratrol and analysed the gliotic and pro-angiogenic response of MGCs under hypoxic conditions. Our results showed an increase in LC3B II and p62 protein levels after both hypoxic exposure respect to normoxia. Moreover, 1 h of reoxygenation after gas hypoxia upregulated LC3B II levels respect to hypoxia although a decreased cell survival was observed. Exposure to low oxygen levels increased the protein expression of the glial fibrillary acid protein (GFAP) in MGCs, whereas Vimentin levels remained constant. In our experimental conditions, Rapamycin but not Resveratrol decreased GFAP protein levels in hypoxia. Finally, supernatants of MGCs incubated in hypoxic conditions and in presence of the autophagy inductors inhibited endothelial cells (ECs) tubulogenesis. In agreement with these results, reduced expression of vascular endothelial growth factor (VEGF) mRNA was observed in MGCs with Rapamycin, whereas pigment epithelium-derived factor (PEDF) mRNA levels significantly increased in MGCs incubated with Resveratrol. In conclusion, this research provides evidence about the variation of autophagy flux under hypoxia and hypoxia-reoxygenation as a protective mechanism activated in response to the injury. In addition, beneficial effects were observed with Rapamycin treatment as it decreased the gliotic response and prevented the development of newly formed blood vessels.

5.
Food Chem Toxicol ; 147: 111922, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33321149

ABSTRACT

Overexpression of P-glycoprotein (P-gp), which is linked to multidrug resistance (MDR), is one of the underlying obstacles to the success of chemotherapy as it reduces the efficacy of anticancer drugs and the side effects of these increase as a result of any increased dose to achieve the therapeutic effect. To identify agents with P-gp inhibitory properties, ethanol extracts from 80 plants were screened for their ability to increase intracellular doxorubicin-associated fluorescence, and the extract of Ligaria cuneifolia was found to be the most effective. Its bioassay-guided isolation yielded the pentacyclic triterpene betulin as active agent. This efficiently inhibited P-gp mediated efflux, as demonstrated by the enhancement of the intracellular accumulation of doxorubicin and rhodamine 123 from 1.56 µM in the P-gp overexpressing MDR leukemia cell, Lucena 1. Betulin was also able to render Lucena 1 sensitive to Dox from 0.39 µM. The docking studies revealed that betulin tightly binds to a key region of the TMDs, with a binding mode overlapping one main site of doxorubicin and, more interestingly, emulating the same contacts as tariquidar, as revealed by the per-residue energetic analysis from molecular dynamics simulations. MTT assay using peripheral blood mononuclear cells and hemolysis assay showed that betulin is devoid of toxicity. These findings provide important evidence that betulin may be a safe and promising entity to be further investigated to develop agents able to overcome P-gp-mediated MDR, resulting in a more effective and less toxic chemotherapy.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/metabolism , Leukemia/drug therapy , Loranthaceae/chemistry , Plant Extracts/pharmacology , Triterpenes/pharmacology , ATP Binding Cassette Transporter, Subfamily B/genetics , Antibiotics, Antineoplastic/metabolism , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Doxorubicin/metabolism , Drug Resistance, Neoplasm , Fluorescent Dyes/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Molecular Structure , Plant Extracts/chemistry , Rhodamine 123/metabolism , Triterpenes/chemistry
6.
J Nat Prod ; 83(6): 1909-1918, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32496057

ABSTRACT

The need for effective candidates as cytotoxic drugs that at the same time challenge cancer multidrug resistance encouraged a search for these in plants of central Argentina. Bioassay-guided fractionation of the cytotoxic extract from Dimerostemma aspilioides led to the isolation of the germacranolide tomenphantin A (1), along with three new analogues (2-4). These efficiently inhibited the proliferation of the leukemia cell lines K562 and CCRF-CEM and their resistant variants, Lucena 1 and CEM/ADR5000, respectively, with IC50 values ranging from 0.40 to 7.7 µM. The structures and relative configurations of compounds 1-4 were elucidated by analysis of the spectroscopic data, in particular NMR spectroscopy. The most active among these was compound 1 (IC50 = 0.40-5.1 µM), and, therefore, this was selected as a model for a mechanistic study, which revealed that its antiproliferative effect was mediated by cell cycle arrest in the G2/M phase followed by apoptosis. The activity of compound 1 was selective, given the absence of cytotoxicity toward peripheral blood mononuclear cells. The results show the potential of these compounds, and in particular of compound 1, as leads for the development of drug candidates to fight sensitive and resistant leukemia cells.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Lactones/pharmacology , Sesquiterpenes, Germacrane/chemistry , Sesquiterpenes, Germacrane/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/ultrastructure , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Humans , Lactones/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Monocytes/drug effects , Plant Components, Aerial/chemistry , Plant Extracts/chemistry
7.
Front Pharmacol ; 8: 205, 2017.
Article in English | MEDLINE | ID: mdl-28487651

ABSTRACT

P-glycoprotein (P-gp) is a membrane protein associated with multidrug resistance (MDR) due to its key role in mediating the traffic of chemotherapeutic drugs outside cancer cells, leading to a cellular response that hinders efforts toward successful therapy. With the aim of finding agents that circumvent the MDR phenotype mediated by P-gp, 15 compounds isolated from native and naturalized plants of Argentina were screened. Among these, the non-cytotoxic lignan (±) pinoresinol successfully restored sensitivity to doxorubicin from 7 µM in the P-gp overexpressed human myelogenous leukemia cells, Lucena 1. This resistance-reversing effect was confirmed by competitively increasing the intracellular doxorubicin accumulation and by significantly inhibiting the efflux of doxorubicin and, to a lesser extent, that of rhodamine 123. The activity obtained was similar to that observed with verapamil. No such results were observed in the sensitive parental K562 cell line. To gain deeper insight into the mode of action of pinoresinol, its effect on P-gp function and expression was examined. The docking simulations indicated that the lignan bound to P-gp at the apex of the V-shaped transmembrane cavity, involving transmembrane helices 4, 5, and 6, and partially overlapped the binding region of tariquidar, which was used as a positive control. These results would shed some light on the nature of its interaction with P-gp at molecular level and merit further mechanistic and kinetic studies. In addition, it showed a maximum 29% activation of ATP hydrolysis and antagonized verapamil-stimulated ATPase activity with an IC50 of 20.9 µM. On the other hand, pinoresinol decreased the presence of P-gp in the cell surface. Derivatives of pinoresinol with improved activity were identified by docking studies. The most promising one, the non-cytotoxic 1-acetoxypinoresinol, caused a reversion of doxorubicin resistance from 0.11 µM and thus higher activity than the lead compound. It also caused a significant increase in doxorubicin accumulation. Results were similar to those observed with verapamil. The results obtained positioned these compounds as potential candidates for effective agents to overcome P-gp-mediated MDR, leading to better outcomes for leukemia chemotherapy.

8.
J Agric Food Chem ; 59(21): 11534-42, 2011 Nov 09.
Article in English | MEDLINE | ID: mdl-21958238

ABSTRACT

The present study investigated the antibacterial activity of two plant-derived compounds, 23-methyl-6-O-desmethylauricepyrone (1) and (Z,Z)-5-(trideca-4,7-dienyl)resorcinol (2), and their synergistic effects with erythromycin and gentamicin against methicillin-susceptible (MSSA) and gentamicin- and methicillin-resistant Staphylococcus aureus (MRSA). Studies of the individual antibacterial activity of each plant-derived compound and synergy experiments were carried out, by the microdilution test in agar and by the checkerboard method, respectively. Compound 1 showed minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 2 and 8 µg/mL, respectively, against both strains of S. aureus, while compound 2 exhibited anti-MSSA and anti-MRSA activity with MICs and MBCs of 4 and 8 and 2 and 8 µg/mL, respectively. Time-kill curves showed that, while compound 1 produced complete killing of both strains at 24 h from the beginning of the experiment, 2 produced the same effect in the first hour. Combinations of 1 with erythromycin or gentamicin showed a notable synergism against MSSA, which enabled the antibiotic concentration to decrease by up to 300 or 260 times, respectively. When the aminoglycoside was placed together with compound 2, only an additive effect was observed. The assayed compounds did not produce erythrocyte hemolysis or genotoxicity and they did not affect macrophage viability at the effective or higher concentrations. These results suggest that both compounds could be considered as promising antibacterial agents while compound 1 could be used in combinatory therapies with erythromycin and gentamicin.


Subject(s)
Anti-Bacterial Agents/pharmacology , Plant Extracts/pharmacology , Plants/chemistry , Pyrones/pharmacology , Resorcinols/pharmacology , Staphylococcus aureus/drug effects , Drug Synergism , Erythrocytes/drug effects , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests
9.
Planta Med ; 77(1): 95-100, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20645245

ABSTRACT

The great increase in bacterial infections is fueling interest in the search for antibacterial products of plant origin. Extracts obtained from 51 native and naturalized plants from central Argentina were therefore evaluated for their IN VITRO inhibitory activity on pathogenic bacteria with the aim of selecting the most active ones as new sources of effective antibiotics. The susceptibility of reference and clinical strains of Enterococcus faecalis, Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella enterica serovar Enteritidis, and Staphylococcus aureus was determined. Extracts from Achyrocline satureioides, Flourensia oolepis, Lepechinia floribunda, and Lithrea molleoides were the most potent, with MIC and MBC values ranging from 0.006 to 2 and 0.012 to 10 mg/mL, respectively, on both gram-positive and negative bacteria. The antibacterial activity-guided isolation of A. satureioides ethanol extract showed 23-methyl-6-O-desmethylauricepyrone (1) to be the most active compound. This compound showed inhibitory effects against gram-positive bacteria with MIC and MBC values of 0.002 and 0.008 mg/mL, respectively, while on gram-negative strains, the MIC and MBC were 0.062-0.250 and 0.062-0.500 mg/mL, respectively. The strong antibacterial activity shown by the four plant extracts or the compound isolated from A. satureioides suggests that they could become part of the arsenal of antibacterial drugs currently used.


Subject(s)
Achyrocline/chemistry , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria/drug effects , Pyrones/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Argentina , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants/chemistry , Pyrones/chemistry , Pyrones/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...