Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Physiol ; 155(10)2023 10 02.
Article in English | MEDLINE | ID: mdl-37526928

ABSTRACT

The KCNQ1 channel is important for the repolarization phase of the cardiac action potential. Loss of function mutations in KCNQ1 can cause long QT syndrome (LQTS), which can lead to cardiac arrythmia and even sudden cardiac death. We have previously shown that polyunsaturated fatty acids (PUFAs) and PUFA analogs can activate the cardiac KCNQ1 channel, making them potential therapeutics for the treatment of LQTS. PUFAs bind to KCNQ1 at two different binding sites: one at the voltage sensor (Site I) and one at the pore (Site II). PUFA interaction at Site I shifts the voltage dependence of the channel to the left, while interaction at Site II increases maximal conductance. The PUFA analogs, linoleic-glycine and linoleic-tyrosine, are more effective than linoleic acid at Site I, but less effective at Site II. Using both simulations and experiments, we find that the larger head groups of linoleic-glycine and linoleic-tyrosine interact with more residues than the smaller linoleic acid at Site I. We propose that this will stabilize the negatively charged PUFA head group in a position to better interact electrostatically with the positively charges in the voltage sensor. In contrast, the larger head groups of linoleic-glycine and linoleic-tyrosine compared with linoleic acid prevent a close fit of these PUFA analogs in Site II, which is more confined. In addition, we identify several KCNQ1 residues as critical PUFA-analog binding residues, thereby providing molecular models of specific interactions between PUFA analogs and KCNQ1. These interactions will aid in future drug development based on PUFA-KCNQ1 channel interactions.


Subject(s)
Long QT Syndrome , Potassium Channels, Voltage-Gated , Humans , KCNQ1 Potassium Channel/metabolism , Potassium Channels, Voltage-Gated/metabolism , Heart , Fatty Acids, Unsaturated/metabolism , Long QT Syndrome/genetics , Mutation , Linoleic Acids/pharmacology
2.
Elife ; 122023 06 23.
Article in English | MEDLINE | ID: mdl-37350568

ABSTRACT

Voltage-gated potassium (KV) channels are important regulators of cellular excitability and control action potential repolarization in the heart and brain. KV channel mutations lead to disordered cellular excitability. Loss-of-function mutations, for example, result in membrane hyperexcitability, a characteristic of epilepsy and cardiac arrhythmias. Interventions intended to restore KV channel function have strong therapeutic potential in such disorders. Polyunsaturated fatty acids (PUFAs) and PUFA analogues comprise a class of KV channel activators with potential applications in the treatment of arrhythmogenic disorders such as long QT syndrome (LQTS). LQTS is caused by a loss-of-function of the cardiac IKs channel - a tetrameric potassium channel complex formed by KV7.1 and associated KCNE1 protein subunits. We have discovered a set of aromatic PUFA analogues that produce robust activation of the cardiac IKs channel, and a unique feature of these PUFA analogues is an aromatic, tyrosine head group. We determine the mechanisms through which tyrosine PUFA analogues exert strong activating effects on the IKs channel by generating modified aromatic head groups designed to probe cation-pi interactions, hydrogen bonding, and ionic interactions. We found that tyrosine PUFA analogues do not activate the IKs channel through cation-pi interactions, but instead do so through a combination of hydrogen bonding and ionic interactions.


Subject(s)
Long QT Syndrome , Potassium Channels, Voltage-Gated , Humans , Potassium Channels , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/metabolism , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , Fatty Acids, Unsaturated/metabolism , Long QT Syndrome/genetics , Arrhythmias, Cardiac , Tyrosine
3.
bioRxiv ; 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36711783

ABSTRACT

Voltage-gated potassium (K V ) channels are important regulators of cellular excitability and control action potential repolarization in the heart and brain. K V channel mutations lead to disordered cellular excitability. Loss-of-function mutations, for example, result in membrane hyperexcitability, a characteristic of epilepsy and cardiac arrhythmias. Interventions intended to restore K V channel function have strong therapeutic potential in such disorders. Polyunsaturated fatty acids (PUFAs) and PUFA analogues comprise a class of K V channel activators with potential applications in the treatment of arrhythmogenic disorders such as Long QT Syndrome (LQTS). LQTS is caused by a loss-of-function of the cardiac I Ks channel - a tetrameric potassium channel complex formed by K V 7.1 and associated KCNE1 protein subunits. We have discovered a set of aromatic PUFA analogues that produce robust activation of the cardiac I Ks channel and a unique feature of these PUFA analogues is an aromatic, tyrosine head group. We determine the mechanisms through which tyrosine PUFA analogues exert strong activating effects on the I Ks channel by generating modified aromatic head groups designed to probe cation-pi interactions, hydrogen bonding, and ionic interactions. We found that tyrosine PUFA analogues do not activate the I Ks channel through cation-pi interactions, but instead do so through a combination of hydrogen bonding and ionic interactions.

4.
Europace ; 24(3): 511-522, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34601592

ABSTRACT

AIM: Long QT syndrome (LQTS) is a cardiac channelopathy predisposing to ventricular arrhythmias and sudden cardiac death. Since current therapies often fail to prevent arrhythmic events in certain LQTS subtypes, new therapeutic strategies are needed. Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid, which enhances the repolarizing IKs current. METHODS AND RESULTS: We investigated the effects of DHA in wild type (WT) and transgenic long QT Type 1 (LQT1; loss of IKs), LQT2 (loss of IKr), LQT5 (reduction of IKs), and LQT2-5 (loss of IKr and reduction of IKs) rabbits. In vivo ECGs were recorded at baseline and after 10 µM/kg DHA to assess changes in heart-rate corrected QT (QTc) and short-term variability of QT (STVQT). Ex vivo monophasic action potentials were recorded in Langendorff-perfused rabbit hearts, and action potential duration (APD75) and triangulation were assessed. Docosahexaenoic acid significantly shortened QTc in vivo only in WT and LQT2 rabbits, in which both α- and ß-subunits of IKs-conducting channels are functionally intact. In LQT2, this led to a normalization of QTc and of its short-term variability. Docosahexaenoic acid had no effect on QTc in LQT1, LQT5, and LQT2-5. Similarly, ex vivo, DHA shortened APD75 in WT and normalized it in LQT2, and additionally decreased AP triangulation in LQT2. CONCLUSIONS: Docosahexaenoic acid exerts a genotype-specific beneficial shortening/normalizing effect on QTc and APD75 and reduces pro-arrhythmia markers STVQT and AP triangulation through activation of IKs in LQT2 rabbits but has no effects if either α- or ß-subunits to IKs are functionally impaired. Docosahexaenoic acid could represent a new genotype-specific therapy in LQT2.


Subject(s)
Docosahexaenoic Acids , Long QT Syndrome , Animals , Animals, Genetically Modified , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/prevention & control , Docosahexaenoic Acids/pharmacology , Electrocardiography , Genotype , Humans , Long QT Syndrome/drug therapy , Long QT Syndrome/genetics , Rabbits
6.
Elife ; 92020 03 24.
Article in English | MEDLINE | ID: mdl-32207683

ABSTRACT

The cardiac ventricular action potential depends on several voltage-gated ion channels, including NaV, CaV, and KV channels. Mutations in these channels can cause Long QT Syndrome (LQTS) which increases the risk for ventricular fibrillation and sudden cardiac death. Polyunsaturated fatty acids (PUFAs) have emerged as potential therapeutics for LQTS because they are modulators of voltage-gated ion channels. Here we demonstrate that PUFA analogues vary in their selectivity for human voltage-gated ion channels involved in the ventricular action potential. The effects of specific PUFA analogues range from selective for a specific ion channel to broadly modulating cardiac ion channels from all three families (NaV, CaV, and KV). In addition, a PUFA analogue selective for the cardiac IKs channel (Kv7.1/KCNE1) is effective in shortening the cardiac action potential in human-induced pluripotent stem cell-derived cardiomyocytes. Our data suggest that PUFA analogues could potentially be developed as therapeutics for LQTS and cardiac arrhythmia.


Subject(s)
Calcium Channels, L-Type/drug effects , Fatty Acids, Unsaturated/pharmacology , KCNQ1 Potassium Channel/drug effects , NAV1.5 Voltage-Gated Sodium Channel/drug effects , Potassium Channels, Voltage-Gated/drug effects , Xenopus Proteins/drug effects , Action Potentials/drug effects , Animals , Anti-Arrhythmia Agents/pharmacology , Calcium Channels, L-Type/physiology , Induced Pluripotent Stem Cells/cytology , KCNQ1 Potassium Channel/physiology , Long QT Syndrome/drug therapy , Myocytes, Cardiac/drug effects , NAV1.5 Voltage-Gated Sodium Channel/physiology , Potassium Channels, Voltage-Gated/physiology , Xenopus Proteins/physiology , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL