Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
RSC Adv ; 14(28): 20254-20277, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38953057

ABSTRACT

The use of metal-organic frameworks (MOFs) for wastewater treatment in continuous operation is a major challenge. To address this, the present study demonstrates the eco-friendly and economic synthesis of Ca-MOF immobilized cellulose beads (Ca-MOF-CB) derived from paper waste. The synthesized Ca-MOF-CB were characterized using standard analytical techniques. Batch sorption studies were performed to check the effect of cellulose composition (wt%), Ca-MOF loading, contact time, and initial metal ion (Pb2+, Cd2+, and Cu2+) concentration. Ca-MOF-CB beads exhibited outstanding equilibrium sorption capacities for Pb2+, Cd2+, and Cu2+, with estimated values of 281.22 ± 7.8, 104.01 ± 10.58, and 114.21 ± 9.68 mg g-1, respectively. Different non-linear isotherms and kinetic models were applied which confirmed the spontaneous, endothermic reactions for the physisorption of Pb2+, Cd2+, and Cu2+. Based on the highest equilibrium sorption capacity for Pb2+ ion, in-depth parametric column studies were conducted in an indigenously developed packed-bed column set-up. The effect of packed-bed height (10 and 20 cm), inlet flow rate (5 and 10 mL min-1), and inlet Pb2+ ion concentration (200, 300, and 500 mg L-1) were studied. The breakthrough curves obtained at different operating conditions were fitted with the empirical models viz. the bed depth service time (BDST), Yoon-Nelson, Thomas, and Yan to estimate the column design parameters. In order to determine the financial implications at large-scale industrial operations, an affordable synthesis cost of 1 kg of Ca-MOF-CB was estimated. Conclusively, the present study showed the feasibility of the developed Ca-MOF-CB for the continuous removal of metal ions at an industrial scale.

2.
Biodegradation ; 35(5): 803-818, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38662141

ABSTRACT

This study aims to valorize waste engine oil (WEO) for synthesizing economically viable biosurfactants (rhamnolipids) to strengthen the circular bioeconomy concept. It specifically focuses on investigating the influence of key bioprocess parameters, viz. agitation and aeration rates, on enhancing rhamnolipid yield in a fed-batch fermentation mode. The methodology involves conducting experiments in a stirred tank bioreactor (3 L) using Pseudomonas aeruginosa gi |KP 163922| as the test organism. Central composite design and response surface methodology (CCD-RSM) are employed to design the experiments and analyze the effects of agitation and aeration rates on various parameters, including dry cell biomass (DCBM), surface tension, tensoactivity, and rhamnolipid yield. It is also essential to determine the mechanistic pathway of biosurfactant production followed by the strain using complex hydrophobic substrates such as WEO. The study reveals that optimal agitation and aeration rates of 200 rpm and 1 Lpm result in the highest biosurfactant yield of 29.76 g/L with minimal surface tension (28 mN/m). Biosurfactant characterization using FTIR, 1H NMR, and UPLC-MS/MS confirm the presence of dominant molecular ion peaks m/z 543.9 and 675.1. This suggests that the biosurfactant is a mixture of mono- and di-rhamnolipids (RhaC10C10, RhaRhaC10C12:1, RhaRhaC12:1C10). The findings present a sustainable approach for biosurfactant production in a fed-batch bioreactor. This research opens the possibility of exploring the use of pilot or large-scale bioreactors for biosurfactant production in future investigations.


Subject(s)
Bioreactors , Glycolipids , Pseudomonas aeruginosa , Surface-Active Agents , Surface-Active Agents/metabolism , Surface-Active Agents/chemistry , Pseudomonas aeruginosa/metabolism , Fermentation , Surface Tension , Biomass , Petroleum/metabolism , Biodegradation, Environmental
SELECTION OF CITATIONS
SEARCH DETAIL