Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
2.
Pediatr Crit Care Med ; 23(5): e257-e266, 2022 05 01.
Article En | MEDLINE | ID: mdl-35250003

OBJECTIVES: Umbilical venous cannulation is the favored approach to perinatal central access worldwide but has a failure rate of 25-50% and the insertion technique has not evolved in decades. Improving the success of this procedure would have broad implications, particularly where peripherally inserted central catheters are not easily obtained and in neonates with congenital heart disease, in whom umbilical access facilitates administration of inotropes and blood products while sparing vessels essential for later cardiac interventions. We sought to use real-time, point-of-care ultrasound to achieve central umbilical venous access in patients for whom conventional, blind placement techniques had failed. DESIGN: Multicenter case series, March 2019-May 2021. SETTING: Cardiac and neonatal ICUs at three tertiary care children's hospitals. PATIENTS: We identified 32 neonates with congenital heart disease, who had failed umbilical venous cannulation using traditional, blind techniques. INTERVENTIONS: Real-time ultrasound guidance and liver pressure were used to replace malpositioned catheters and achieve successful placement at the inferior cavoatrial junction. MEASUREMENTS AND MAIN RESULTS: In 32 patients with failed prior umbilical venous catheter placement, real-time ultrasound guidance was used to successfully "rescue" the line and achieve central position in 23 (72%). Twenty of 25 attempts (80%) performed in the first 48 hours of life were successful, and three of seven attempts (43%) performed later. Twenty-four patients (75%) were on prostaglandin infusion at the time of the procedure. We did not identify an association between patient weight or gestational age and successful placement. CONCLUSIONS: Ultrasound guidance has become standard of care for percutaneous central venous access but is a new and emerging technique for umbilical vessel catheterization. In this early experience, we report that point-of-care ultrasound, together with liver pressure, can be used to markedly improve success of placement. This represents a significant advance in this core neonatal procedure.


Catheterization, Central Venous , Catheterization, Peripheral , Central Venous Catheters , Heart Defects, Congenital , Catheterization, Central Venous/methods , Catheterization, Peripheral/methods , Catheters , Child , Heart Defects, Congenital/diagnostic imaging , Heart Defects, Congenital/therapy , Humans , Infant, Newborn , Ultrasonography , Ultrasonography, Interventional/methods
3.
Pediatr Res ; 91(6): 1383-1390, 2022 05.
Article En | MEDLINE | ID: mdl-33947998

BACKGROUND: In the developing brain, the death of immature oligodendrocytes (OLs) has been proposed to explain a developmental window for vulnerability to white matter injury (WMI). However, in neonatal mice, chronic sublethal intermittent hypoxia (IH) recapitulates the phenotype of diffuse WMI without affecting cellular viability. This work determines whether, in neonatal mice, a developmental window of WMI vulnerability exists in the absence of OLs lineage cellular death. METHODS: Neonatal mice were exposed to cell-nonlethal early or late IH stress. The presence or absence of WMI phenotype in their adulthood was defined by the extent of sensorimotor deficit and diffuse cerebral hypomyelination. A separate cohort of mice was examined for markers of cellular degeneration and OLs maturation. RESULTS: Compared to normoxic littermates, only mice exposed to early IH stress demonstrated arrested OLs maturation, diffuse cerebral hypomyelination, and sensorimotor deficit. No cellular death associated with IH was detected. CONCLUSIONS: Neonatal sublethal IH recapitulates the phenotype of diffuse WMI only when IH stress coincides with the developmental stage of primary white matter myelination. This signifies a contribution of cell-nonlethal mechanisms in defining the developmental window of vulnerability to diffuse WMI. IMPACT: The key message of our work is that the developmental window of vulnerability to the WMI driven by intermittent hypoxemia exists even in the absence of excessive OLs and other cells death. This is an important finding because the existence of the developmental window of vulnerability to WMI has been explained by a lethal-selective sensitivity of immature OLs to hypoxic and ischemic stress, which coincided with their differentiation. Thus, our study expands mechanistic explanation of a developmental window of sensitivity to WMI by showing the existence of cell-nonlethal pathways responsible for this biological phenomenon.


Brain Injuries , White Matter , Adult , Animals , Brain , Brain Injuries/metabolism , Humans , Hypoxia/metabolism , Mice , Oligodendroglia/metabolism
4.
Dev Dyn ; 237(2): 454-63, 2008 Feb.
Article En | MEDLINE | ID: mdl-18161059

Small heat shock proteins (sHSPs), or alpha-crystallins, are low-molecular weight proteins found in every kingdom and nearly every species examined to date. Many, if not all, sHSPs act as molecular chaperones. Several also have functions independent of their chaperone activity, and at least a few are expressed in specific spatiotemporal patterns during embryonic and/or juvenile stages, suggesting specific roles during development. To date, however, no one has systematically characterized the expression patterns of all of the sHSPs during development in any organism. We have characterized the normal heat shock-induced expression patterns of all 13 zebrafish sHSPs during development. Seven of the sHSPs are expressed in a tissue-specific manner during development, and five are upregulated by heat shock. The results of these studies provide a foundation for analysis of sHSP function during normal development and their roles in protecting cells from the effects environmental stressors.


Gene Expression Regulation, Developmental/physiology , Heat-Shock Proteins, Small/metabolism , Zebrafish/embryology , Animals , Gene Expression Profiling , In Situ Hybridization , Reverse Transcriptase Polymerase Chain Reaction , Zebrafish/metabolism
...