Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cancer Biol Ther ; 25(1): 2296048, 2024 12 31.
Article in English | MEDLINE | ID: mdl-38206570

ABSTRACT

CD73 is a cell surface 5'nucleotidase (NT5E) and key node in the catabolic process generating immunosuppressive adenosine in cancer. Using a murine monoclonal antibody surrogate of Oleclumab, we investigated the effect of CD73 inhibition in concert with cytotoxic therapies (chemotherapies as well as fractionated radiotherapy) and PD-L1 blockade. Our results highlight improved survival in syngeneic tumor models of colorectal cancer (CT26 and MC38) and sarcoma (MCA205). This therapeutic outcome was in part driven by cytotoxic CD8 T-cells, as evidenced by the detrimental effect of CD8 depleting antibody treatment of MCA205 tumor bearing mice treated with anti-CD73, anti-PD-L1 and 5-Fluorouracil+Oxaliplatin (5FU+OHP). We hypothesize that the improved responses are tumor microenvironment (TME)-driven, as suggested by the lack of anti-CD73 enhanced cytopathic effects mediated by 5FU+OHP on cell lines in vitro. Pharmacodynamic analysis, using imaging mass cytometry and RNA-sequencing, revealed noteworthy changes in specific cell populations like cytotoxic T cells, B cells and NK cells in the CT26 TME. Transcriptomic analysis highlighted treatment-related modulation of gene profiles associated with an immune response, NK and T-cell activation, T cell receptor signaling and interferon (types 1 & 2) pathways. Inclusion of comparator groups representing the various components of the combination allowed deconvolution of contribution of the individual therapeutic elements; highlighting specific effects mediated by the anti-CD73 antibody with respect to immune-cell representation, chemotaxis and myeloid biology. These pre-clinical data reflect complementarity of adenosine blockade with cytotoxic therapy, and T-cell checkpoint inhibition, and provides new mechanistic insights in support of combination therapy.


Subject(s)
Antibodies, Monoclonal , Sarcoma , Animals , Mice , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Immunosuppressive Agents , Adenosine , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Tumor Microenvironment
2.
J Immunother Cancer ; 11(8)2023 08.
Article in English | MEDLINE | ID: mdl-37553182

ABSTRACT

BACKGROUND: The prognosis for patients with pancreatic ductal adenocarcinoma (PDAC) remains extremely poor. It has been suggested that the adenosine pathway contributes to the ability of PDAC to evade the immune system and hence, its resistance to immuno-oncology therapies (IOT), by generating extracellular adenosine (eAdo). METHODS: Using genetically engineered allograft models of PDAC in syngeneic mice with defined and different immune infiltration and response to IOT and autochthonous tumors in KPC mice we investigated the impact of the adenosine pathway on the PDAC tumor microenvironment (TME). Flow cytometry and imaging mass cytometry (IMC) were used to characterize the subpopulation frequency and spatial distribution of tumor-infiltrating immune cells. Mass spectrometry imaging (MSI) was used to visualize adenosine compartmentalization in the PDAC tumors. RNA sequencing was used to evaluate the influence of the adenosine pathway on the shaping of the immune milieu and correlate our findings to published data sets in human PDAC. RESULTS: We demonstrated high expression of adenosine pathway components in tumor-infiltrating immune cells (particularly myeloid populations) in the murine models. MSI demonstrated that extracellular adenosine distribution is heterogeneous in tumors, with high concentrations in peri-necrotic, hypoxic regions, associated with rich myeloid infiltration, demonstrated using IMC. Protumorigenic M2 macrophages express high levels of the Adora2a receptor; particularly in the IOT resistant model. Blocking the in vivo formation and function of eAdo (Adoi), using a combination of anti-CD73 antibody and an Adora2a inhibitor slowed tumor growth and reduced metastatic burden. Additionally, blocking the adenosine pathway improved the efficacy of combinations of cytotoxic agents or immunotherapy. Adoi remodeled the TME, by reducing the infiltration of M2 macrophages and regulatory T cells. RNA sequencing analysis showed that genes related to immune modulation, hypoxia and tumor stroma were downregulated following Adoi and a specific adenosine signature derived from this is associated with a poorer prognosis in patients with PDAC. CONCLUSIONS: The formation of eAdo promotes the development of the immunosuppressive TME in PDAC, contributing to its resistance to conventional and novel therapies. Therefore, inhibition of the adenosine pathway may represent a strategy to modulate the PDAC immune milieu and improve therapy response in patients with PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Mice , Animals , Adenosine , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Immunotherapy/methods , Tumor Microenvironment
3.
Anal Chem ; 94(3): 1795-1803, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35005896

ABSTRACT

Gemcitabine (dFdC) is a common treatment for pancreatic cancer; however, it is thought that treatment may fail because tumor stroma prevents drug distribution to tumor cells. Gemcitabine is a pro-drug with active metabolites generated intracellularly; therefore, visualizing the distribution of parent drug as well as its metabolites is important. A multimodal imaging approach was developed using spatially coregistered mass spectrometry imaging (MSI), imaging mass cytometry (IMC), multiplex immunofluorescence microscopy (mIF), and hematoxylin and eosin (H&E) staining to assess the local distribution and metabolism of gemcitabine in tumors from a genetically engineered mouse model of pancreatic cancer (KPC) allowing for comparisons between effects in the tumor tissue and its microenvironment. Mass spectrometry imaging (MSI) enabled the visualization of the distribution of gemcitabine (100 mg/kg), its phosphorylated metabolites dFdCMP, dFdCDP and dFdCTP, and the inactive metabolite dFdU. Distribution was compared to small-molecule ATR inhibitor AZD6738 (25 mg/kg), which was codosed. Gemcitabine metabolites showed heterogeneous distribution within the tumor, which was different from the parent compound. The highest abundance of dFdCMP, dFdCDP, and dFdCTP correlated with distribution of endogenous AMP, ADP, and ATP in viable tumor cell regions, showing that gemcitabine active metabolites are reaching the tumor cell compartment, while AZD6738 was located to nonviable tumor regions. The method revealed that the generation of active, phosphorylated dFdC metabolites as well as treatment-induced DNA damage primarily correlated with sites of high proliferation in KPC PDAC tumor tissue, rather than sites of high parent drug abundance.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/drug therapy , Cell Line, Tumor , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Mice , Multimodal Imaging , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Tumor Microenvironment , Gemcitabine
4.
Oncotarget ; 8(39): 66215-66225, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-29029505

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid tumors. With an overall five-year survival rate remaining below 6%, there is an explicit need to search for new molecular targets for therapeutic interventions. We undertook a barcode labelled short-hairpin (shRNA) library screen in pancreatic cancer cells in order to identify novel genes promoting cancer survival and progression. Among the candidate genes identified in this screen was the deubiquitinase USP5, which subsequent gene expression analyses demonstrated to be significantly upregulated in primary human pancreatic cancer tissues. Using different knockdown approaches, we show that expression of USP5 is essential for the proliferation and survival of pancreatic cancer cells, tested under different 2D and 3D cell culture conditions as well as in in vivo experiments. These growth inhibition effects upon knockdown of USP5 are mediated primarily by the attenuation of G1/S phase transition in the cells, which is accompanied by accumulation of DNA damage, upregulation of p27, and increased apoptosis rates. Since USP5 is overexpressed in cancer tissues, it can thus potentially serve as a new target for therapeutic interventions, especially given the fact that deubiquitinases are currently emerging as new class of attractive drug targets in cancer.

5.
Cancer Res ; 76(1): 96-107, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26669866

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) carries the most dismal prognosis of all solid tumors and is generally strongly resistant to currently available chemo- and/or radiotherapy regimens, including targeted molecular therapies. Therefore, unraveling the molecular mechanisms underlying the aggressive behavior of pancreatic cancer is a necessary prerequisite for the development of novel therapeutic approaches. We previously identified the protein placenta-specific 8 (PLAC8, onzin) in a genome-wide search for target genes associated with pancreatic tumor progression and demonstrated that PLAC8 is strongly ectopically expressed in advanced preneoplastic lesions and invasive human PDAC. However, the molecular function of PLAC8 remained unclear, and accumulating evidence suggested its role is highly dependent on cellular and physiologic context. Here, we demonstrate that in contrast to other cellular systems, PLAC8 protein localizes to the inner face of the plasma membrane in pancreatic cancer cells, where it interacts with specific membranous structures in a temporally and spatially stable manner. Inhibition of PLAC8 expression strongly inhibited pancreatic cancer cell growth by attenuating cell-cycle progression, which was associated with transcriptional and/or posttranslational modification of the central cell-cycle regulators CDKN1A, retinoblastoma protein, and cyclin D1 (CCND1), but did not impact autophagy. Moreover, Plac8 deficiency significantly inhibited tumor formation in genetically engineered mouse models of pancreatic cancer. Together, our findings establish PLAC8 as a central mediator of tumor progression in PDAC and as a promising candidate gene for diagnostic and therapeutic targeting.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Proteins/metabolism , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Cycle/physiology , Cell Line, Tumor , Cell Proliferation/physiology , Disease Progression , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Prognosis , Proteins/genetics , Tissue Array Analysis , Transfection
6.
Expert Opin Ther Targets ; 14(2): 143-55, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20055714

ABSTRACT

IMPORTANCE OF THE FIELD: Cardiovascular disease is a leading cause of death in modern societies. Hyperpolarizing Ca(2+)-activated K(+) channels (K(Ca)) are important membrane proteins in the control of arterial tone and pathological vascular remodelling and thus could serve as new drug targets. AREAS COVERED IN THIS REVIEW: We summarize recent advances in the field of vascular K(Ca) and their roles in cardiovascular pathologies such as hypertension and restenosis disease and draw attention to novel small-molecule channel modulators and their possible therapeutic utility. This review focuses on literature from the last four to five years. WHAT THE READER WILL GAIN: Pharmacological opening of endothelial KCa3.1/KCa2.3 channels stimulates endothelium-derived-hyperpolarizing-factor-mediated arteriolar dilation and lowers blood pressure. Inhibition of smooth muscle KCa3.1 channels has beneficial effects in restenosis disease and atherosclerosis. We consider the therapeutic potential of KCa3.1/KCa2.3 openers as novel endothelium-specific antihypertensive drugs as well as of KCa3.1-blockers for the treatment of pathological vascular remodelling and discuss advantages and disadvantages of the pharmacotherapeutic approaches. TAKE HOME MESSAGE: Pharmacological manipulation of vascular K(Ca) channels by novel small-molecule modulators offers new venues for alternative treatments of hypertension, restenosis and atherosclerosis. Additional efforts are required to optimize these compounds and to validate them as cardiovascular-protective drugs.


Subject(s)
Atherosclerosis/drug therapy , Hypertension/drug therapy , Potassium Channels, Calcium-Activated/drug effects , Vascular Diseases/drug therapy , Animals , Biological Factors/physiology , Endothelium, Vascular/physiology , Humans , Hypertension/etiology , Intermediate-Conductance Calcium-Activated Potassium Channels/drug effects , Intermediate-Conductance Calcium-Activated Potassium Channels/physiology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/drug effects , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/physiology , Potassium Channels, Calcium-Activated/antagonists & inhibitors , Potassium Channels, Calcium-Activated/physiology , Vasodilation
7.
Proc Natl Acad Sci U S A ; 106(34): 14518-23, 2009 Aug 25.
Article in English | MEDLINE | ID: mdl-19706538

ABSTRACT

Proliferation of interstitial fibroblasts is a hallmark of progressive renal fibrosis commonly resulting in chronic kidney failure. The intermediate-conductance Ca(2+)-activated K(+) channel (K(Ca)3.1) has been proposed to promote mitogenesis in several cell types and contribute to disease states characterized by excessive proliferation. Here, we hypothesized that K(Ca)3.1 activity is pivotal for renal fibroblast proliferation and that deficiency or pharmacological blockade of K(Ca)3.1 suppresses development of renal fibrosis. We found that mitogenic stimulation up-regulated K(Ca)3.1 in murine renal fibroblasts via a MEK-dependent mechanism and that selective blockade of K(Ca)3.1 functions potently inhibited fibroblast proliferation by G(0)/G(1) arrest. Renal fibrosis induced by unilateral ureteral obstruction (UUO) in mice was paralleled by a robust up-regulation of K(Ca)3.1 in affected kidneys. Mice lacking K(Ca)3.1 (K(Ca)3.1(-/-)) showed a significant reduction in fibrotic marker expression, chronic tubulointerstitial damage, collagen deposition and alphaSMA(+) cells in kidneys after UUO, whereas functional renal parenchyma was better preserved. Pharmacological treatment with the selective K(Ca)3.1 blocker TRAM-34 similarly attenuated progression of UUO-induced renal fibrosis in wild-type mice and rats. In conclusion, our data demonstrate that K(Ca)3.1 is involved in renal fibroblast proliferation and fibrogenesis and suggest that K(Ca)3.1 may represent a therapeutic target for the treatment of fibrotic kidney disease.


Subject(s)
Fibroblasts/drug effects , Intermediate-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Kidney/drug effects , Pyrazoles/pharmacology , Animals , Apoptosis/drug effects , Blotting, Western , Cell Cycle/drug effects , Cell Line , Cell Proliferation/drug effects , Fibroblast Growth Factor 2/pharmacology , Fibroblasts/cytology , Fibroblasts/physiology , Fibrosis/etiology , Fibrosis/prevention & control , Flow Cytometry , Gene Expression/drug effects , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Intermediate-Conductance Calcium-Activated Potassium Channels/physiology , Kidney/metabolism , Kidney/pathology , Membrane Potentials/drug effects , Mice , Mice, Knockout , Patch-Clamp Techniques , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Ureteral Obstruction/complications
8.
Circulation ; 119(17): 2323-32, 2009 May 05.
Article in English | MEDLINE | ID: mdl-19380617

ABSTRACT

BACKGROUND: It has been proposed that activation of endothelial SK3 (K(Ca)2.3) and IK1 (K(Ca)3.1) K+ channels plays a role in the arteriolar dilation attributed to an endothelium-derived hyperpolarizing factor (EDHF). However, our understanding of the precise function of SK3 and IK1 in the EDHF dilator response and in blood pressure control remains incomplete. To clarify the roles of SK3 and IK1 channels in the EDHF dilator response and their contribution to blood pressure control in vivo, we generated mice deficient for both channels. METHODS AND RESULTS: Expression and function of endothelial SK3 and IK1 in IK1(-/-)/SK3(T/T) mice was characterized by patch-clamp, membrane potential measurements, pressure myography, and intravital microscopy. Blood pressure was measured in conscious mice by telemetry. Combined IK1/SK3 deficiency in IK1(-/-)/SK3(T/T) (+doxycycline) mice abolished endothelial K(Ca) currents and impaired acetylcholine-induced smooth muscle hyperpolarization and EDHF-mediated dilation in conduit arteries and in resistance arterioles in vivo. IK1 deficiency had a severe impact on acetylcholine-induced EDHF-mediated vasodilation, whereas SK3 deficiency impaired NO-mediated dilation to acetylcholine and to shear stress stimulation. As a consequence, SK3/IK1-deficient mice exhibited an elevated arterial blood pressure, which was most prominent during physical activity. Overexpression of SK3 in IK1(-/-)/SK3(T/T) mice partially restored EDHF- and nitric oxide-mediated vasodilation and lowered elevated blood pressure. The IK1-opener SKA-31 enhanced EDHF-mediated vasodilation and lowered blood pressure in SK3-deficient IK1(+/+)/SK3(T/T) (+doxycycline) mice to normotensive levels. CONCLUSIONS: Our study demonstrates that endothelial SK3 and IK1 channels have distinct stimulus-dependent functions, are major players in the EDHF pathway, and significantly contribute to arterial blood pressure regulation. Endothelial K(Ca) channels may represent novel therapeutic targets for the treatment of hypertension.


Subject(s)
Biological Factors/physiology , Hypertension/etiology , Vasodilation , Animals , Biological Factors/metabolism , Blood Pressure/physiology , Calcium/metabolism , Membrane Potentials , Mice , Mice, Knockout , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/physiology , Shaw Potassium Channels/deficiency , Small-Conductance Calcium-Activated Potassium Channels/deficiency
9.
Br J Pharmacol ; 157(4): 509-26, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19302590

ABSTRACT

The arterial endothelium critically contributes to blood pressure control by releasing vasodilating autacoids such as nitric oxide, prostacyclin and a third factor or pathway termed 'endothelium-derived hyperpolarizing factor' (EDHF). The nature of EDHF and EDHF-signalling pathways is not fully understood yet. However, endothelial hyperpolarization mediated by the Ca(2+)-activated K(+) channels (K(Ca)) has been suggested to play a critical role in initializing EDHF-dilator responses in conduit and resistance-sized arteries of many species including humans. Endothelial K(Ca) currents are mediated by the two K(Ca) subtypes, intermediate-conductance K(Ca) (KCa3.1) (also known as, a.k.a. IK(Ca)) and small-conductance K(Ca) type 3 (KCa2.3) (a.k.a. SK(Ca)). In this review, we summarize current knowledge about endothelial KCa3.1 and KCa2.3 channels, their molecular and pharmacological properties and their specific roles in endothelial function and, particularly, in the EDHF-dilator response. In addition we focus on recent experimental evidences derived from KCa3.1- and/or KCa2.3-deficient mice that exhibit severe defects in EDHF signalling and elevated blood pressures, thus highlighting the importance of the KCa3.1/KCa2.3-EDHF-dilator system for blood pressure control. Moreover, we outline differential and overlapping roles of KCa3.1 and KCa2.3 for EDHF signalling as well as for nitric oxide synthesis and discuss recent evidence for a heterogeneous (sub) cellular distribution of KCa3.1 (at endothelial projections towards the smooth muscle) and KCa2.3 (at inter-endothelial borders and caveolae), which may explain their distinct roles for endothelial function. Finally, we summarize the interrelations of altered KCa3.1/KCa2.3 and EDHF system impairments with cardiovascular disease states such as hypertension, diabetes, dyslipidemia and atherosclerosis and discuss the therapeutic potential of KCa3.1/KCa2.3 openers as novel types of blood pressure-lowering drugs.


Subject(s)
Biological Factors/physiology , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/physiopathology , Drug Discovery , Endothelium, Vascular/physiopathology , Potassium Channels, Calcium-Activated/biosynthesis , Vasodilation/drug effects , Vasodilation/physiology , Vasodilator Agents/therapeutic use , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Endothelium, Vascular/drug effects , Humans , Models, Biological , Potassium Channels, Calcium-Activated/agonists , Potassium Channels, Calcium-Activated/antagonists & inhibitors , Potassium Channels, Calcium-Activated/physiology , Signal Transduction/drug effects , Signal Transduction/physiology , Vasodilator Agents/pharmacology
10.
Pflugers Arch ; 458(2): 291-302, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19037656

ABSTRACT

Gardos channel, the erythrocyte Ca(2+)-activated K(+) channel (K(Ca)3.1), is considered a major regulator of red blood cell (RBC) volume by mediating efflux of potassium and thus cell dehydration and shrinkage. However, the functional importance of K(Ca)3.1 in RBC in vivo is incompletely understood. Here, we used K(Ca)3.1(-/-)-mice to investigate the consequences of K(Ca)3.1 deficiency for RBC indices, functions, and sequestration. RBCs of K(Ca)3.1(-/-)-mice of all ages were mildly macrocytic but their biconcave appearance being preserved. RBC number, total hemoglobin, and hematocrit were unchanged in the adult K(Ca)3.1(-/-)-mice and increased in the premature K(Ca)3.1(-/-)-mice. Filterability, Ca(2+)-dependent volume decrease and osmotic tolerance of RBCs lacking K(Ca)3.1 were noticeably reduced when compared to RBC of wild-type littermates. Deformability to increasing shear stress was unchanged. Strikingly, K(Ca)3.1(-/-)-mice developed progressive splenomegaly which was considerable ( approximately 200% of controls) in the >6-month-old mice and was paralleled by increased iron deposition in the aged mice presumably as a consequence of enhanced RBC sequestration. Daily injections of the K(Ca)3.1-blocker TRAM-34 (120 mg/kg) also produced mild splenomegaly in wild-type mice. We conclude that genetic deficit of erythroid K(Ca)3.1 causes mild RBC macrocytosis, presumably leading to reduced filterability, and impairs volume regulation. These RBC defects result in mild but progressive splenomegaly.


Subject(s)
Erythrocyte Deformability/drug effects , Intermediate-Conductance Calcium-Activated Potassium Channels/physiology , Splenomegaly/etiology , Animals , Cell Death/drug effects , Cell Size , Erythrocyte Count , Erythrocyte Indices/drug effects , Erythrocytes , Flow Cytometry , Intermediate-Conductance Calcium-Activated Potassium Channels/deficiency , Iron/metabolism , Mice , Pyrazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...