Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(38): 44621-44630, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37721709

ABSTRACT

Membrane-active molecules are of great importance to drug delivery and antimicrobials applications. While the ability to prototype new membrane-active molecules has improved greatly with the advent of automated chemistries and rapid biomolecule expression techniques, testing methods are still limited by throughput, cost, and modularity. Existing methods suffer from feasibility constraints of working with pathogenic living cells and by intrinsic limitations of model systems. Herein, we demonstrate an abiotic sensor that uses semiconducting single-walled carbon nanotubes (SWCNTs) as near-infrared fluorescent transducers to report membrane interactions. This sensor is composed of SWCNTs aqueously suspended in lipid, creating a cylindrical, bilayer corona; these SWCNT probes are very sensitive to solvent access (changes in permittivity) and thus report morphological changes to the lipid corona by modulation of fluorescent signals, where binding and disruption are reported as brightening and attenuation, respectively. This mechanism is first demonstrated with chemical and physical membrane-disruptive agents, including ethanol and sodium dodecyl sulfate, and application of electrical pulses. Known cell-penetrating and antimicrobial peptides are then used to demonstrate how the dynamic response of these sensors can be deconvoluted to evaluate different parallel mechanisms of interaction. Last, SWCNTs functionalized in several different bacterial lipopolysaccharides (Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli) are used to evaluate a panel of known membrane-disrupting antimicrobials to demonstrate that drug selectivity can be assessed by suspension of SWCNTs with different membrane materials.

2.
ACS Appl Mater Interfaces ; 15(20): 24084-24096, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37184257

ABSTRACT

Lipid-functionalized single-walled carbon nanotubes (SWNTs) have garnered significant interest for their potential use in a wide range of biomedical applications. In this work, we used molecular dynamics simulations to study the equilibrium properties of SWNTs surrounded by the phosphatidylcholine (POPC) corona phase and their interactions with three cell membrane disruptor peptides: colistin, TAT peptide, and crotamine-derived peptide. Our results show that SWNTs favor asymmetrical positioning within the POPC corona, so that one side of the SWNT, covered by the thinnest part of the corona, comes in contact with charged and polar functional groups of POPC and water. We also observed that colistin and TAT insert deeply into the POPC corona, while crotamine-derived peptide only adsorbs to the corona surface. In separate simulations, we show that three examined peptides exhibit similar insertion and adsorption behaviors when interacting with POPC bilayers, confirming that peptide-induced perturbations to POPC in conjugates and bilayers are similar in nature and magnitude. Furthermore, we observed correlations between the peptide-induced structural perturbations and the near-infrared emission of the lipid-functionalized SWNTs, which suggest that the optical signal of the conjugates transduces the morphological changes in the lipid corona. Overall, our findings indicate that lipid-functionalized SWNTs could serve as simplified cell membrane model systems for prescreening of new antimicrobial compounds that disrupt cell membranes.


Subject(s)
Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Colistin , Peptides/chemistry , Cell Membrane/metabolism , Lecithins , Lipid Bilayers/chemistry
3.
bioRxiv ; 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36747775

ABSTRACT

Lipid-functionalized single-walled carbon nanotubes (SWNTs) have garnered significant interest for their potential use in a wide range of biomedical applications. In this work, we used molecular dynamics simulations to study the equilibrium properties of SWNTs surrounded by the phosphatidylcholine (POPC) corona phase, and their interactions with three cell membrane disruptor peptides: colistin, TAT peptide, and crotamine-derived peptide. Our results show that SWNTs favor asymmetrical positioning within the POPC corona, so that one side of the SWNT, covered by the thinnest part of the corona, comes in contact with charged and polar functional groups of POPC and water. We also observed that colistin and TAT insert deeply into POPC corona, while crotamine-derived peptide only adsorbs to the corona surface. Compared to crotamine-derived peptide, colistin and TAT also induce larger perturbations in the thinnest region of the corona, by allowing more water molecules to directly contact the SWNT surface. In separate simulations, we show that three examined peptides exhibit similar insertion and adsorption behaviors when interacting with POPC bilayers, confirming that peptide-induced perturbations to POPC in conjugates and bilayers are similar in nature and magnitude. Furthermore, we observed correlations between the peptide-induced structural perturbations and the near-infrared emission of the lipid-functionalized SWNTs, which suggest that the optical signal of the conjugates transduces the morphological changes in the lipid corona. Overall, our findings indicate that lipid-functionalized SWNTs could serve as simplified cell membrane model systems for pre-screening of new antimicrobial compounds that disrupt cell membranes.

4.
ACS Nano ; 17(1): 4-11, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36573831

ABSTRACT

The issue of reliability and repeatability of data in the nanomedicine literature is a growing concern among stakeholders. This perspective discusses the key differences between academia and industry in the reproducibility of data acquisition and protocols in the field of nanomedicine. We also discuss what academic researchers can learn from systems implemented in industry to standardize data acquisition and in which ways these can be efficiently adopted by the academic community.


Subject(s)
Nanomedicine , Nanomedicine/methods , Reproducibility of Results
5.
Anal Chem ; 94(2): 856-865, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34939783

ABSTRACT

Hydrolase co-therapies that degrade biofilm extracellular polymeric substances (EPS) allow for a better diffusion of antibiotics and more effective treatment; current methods for quantitatively measuring the enzymatic degradation of EPS are not amendable to high-throughput screening. Herein, we present biofilm EPS-functionalized single-walled carbon nanotube (SWCNT) probes for rapid screening of hydrolytic enzyme selectivity and activity on EPS. The extent of biofilm EPS degradation is quantified by monitoring the quenching of the SWCNT fluorescence. We used this platform to screen 16 hydrolases with varying bond breaking selectivity against a panel of wild-type Pseudomonas aeruginosa and mutants deficient or altered in one or more EPS. Next, we performed concentration-dependent studies of six enzymes on two common strains found in cystic fibrosis (CF) environments and, for each enzyme, extracted three first-order rate constants and their relative contributions by fitting a parallel, multi-site degradation model, with a good model fit (R2 from 0.65 to 0.97). Reaction rates (turnover rates) are dependent on the enzyme concentration and range from 6.67 × 10-11 to 2.80 × 10-3 *s-1 per mg/mL of enzymes. Lastly, we confirmed findings from this new assay using an established crystal-violet staining assay for a subset of hydrolase panels. In summary, our work shows that this modular sensor is amendable to the high-throughput screening of EPS degradation, thereby improving the rate of discovery and development of novel hydrolases.


Subject(s)
Nanotubes, Carbon , Pseudomonas aeruginosa , Anti-Bacterial Agents/metabolism , Biofilms , Extracellular Matrix/metabolism , Pseudomonas aeruginosa/metabolism
6.
Anal Chem ; 93(11): 4800-4808, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33703890

ABSTRACT

The practical impact of analytical probes that transduce in the near-infrared (nIR) has been dampened by the lack of cost-effective and portable nIR fluorimeters. Herein, we demonstrate straightforward designs for an inexpensive microplate reader and a portable fluorimeter. These instruments require minimally complex machining and fabrication and operate with an open-source programming language (Python). Complete wiring diagrams, assembly diagrams, and scripts are provided. To demonstrate the utility of these two instruments, we performed high-throughput and field-side measurements of soil samples to evaluate the effect of soil management strategies on extracellular proteolytic, cellulolytic, and lignin-modifying activities. This was accomplished with fluorescent enzyme probes that utilized uniquely sensitive transducers exclusive to the nIR spectrum, single-walled carbon nanotubes. We also used the portable fluorimeter to evaluate spatial variations of proteolytic activity within individual field plots, while minimizing the effects of soil storage and handling. These demonstrations indicate the utility of these fluorimeters for translating analytical probes that operate in the nIR beyond the laboratory and into actual use.


Subject(s)
Nanotubes, Carbon , Soil
7.
PLoS One ; 15(8): e0237473, 2020.
Article in English | MEDLINE | ID: mdl-32813720

ABSTRACT

Solid phase peptide synthesis (SPPS) has enabled widespread use of synthetic peptides in applications ranging from pharmaceuticals to materials science. The demand for synthetic peptides has driven recent efforts to produce automated SPPS synthesizers which utilize fluid-handling components common to chemistry laboratories to drive costs down to several thousand dollars. Herein, we describe the design and validation of a more 'frugal' SPPS synthesizer that uses inexpensive, consumer-grade fluid-handling components to achieve a prototype price point between US$300 and $600. We demonstrated functionality by preparing and characterizing peptides with a variety of distinct properties including binding functionality, nanoscale self-assembly, and oxidation-induced fluorescence. This system yielded micromoles of peptide at a cost of approximately $1/residue, a cost which may be further reduced by optimization and bulk purchasing.


Subject(s)
Peptides/chemical synthesis , Solid-Phase Synthesis Techniques/methods , Amino Acid Sequence , Automation , Cell-Penetrating Peptides/chemical synthesis , Cell-Penetrating Peptides/chemistry , Equipment Design , Fluorometry , Nanostructures/chemistry , Oxidation-Reduction , Peptides/chemistry , Solid-Phase Synthesis Techniques/economics , Solid-Phase Synthesis Techniques/instrumentation
8.
NPJ Digit Med ; 3: 62, 2020.
Article in English | MEDLINE | ID: mdl-32377573

ABSTRACT

Sweat loss can help determine hydration status of individuals working in harsh conditions, which is especially relevant to those who wear thick personal protective equipment (PPE) such as firefighters. A wireless, passive, conformable sweat sensor sticker is described here that can be worn under and interrogated through thick clothing to simultaneously measure sweat loss volume and conductivity. The sticker consists of a laser-ablated, microfluidic channel and a resonant sensor transducer. The resonant sensor is wirelessly read with a handheld vector network analyzer coupled to two, co-planar, interrogation antennas that measure the transmission loss. A sweat proxy is used to fill the channels and it is determined that the sensor can orthogonally determine the sweat conductivity and volume filled in the channel via peak transmission loss magnitude and frequency respectively. A four-person study is then used to determine level of sensor variance caused by local tissue dielectric heterogeneity and sensor-reader orientation.

9.
PLoS Biol ; 17(7): e3000406, 2019 07.
Article in English | MEDLINE | ID: mdl-31339883

ABSTRACT

Noncontact methods to measure animal activity and physiology are necessary to monitor undisturbed states such as hibernation. Although some noncontact measurement systems are commercially available, they are often incompatible with realistic habitats, which feature freely moving animals in small, cluttered environments. A growing market of single-board computers, microcontrollers, and inexpensive sensors has made it possible to assemble bespoke integrated sensor systems at significantly lower price points. Herein, we describe a custom-built nesting box imager (NBI) that uses a single-board computer (Raspberry Pi) with a passive infrared (IR) motion sensor, silicon charge-coupled device (CCD), and IR camera CCD to monitor the activity, surface body temperature, and respiratory rate of the meadow jumping mouse during hibernation cycles. The data are logged up to 12 samples per minute and postprocessed using custom Matlab scripts. The entire unit can be built at a price point below US$400, which will be drastically reduced as IR (thermal) arrays are integrated into more consumer electronics and become less expensive.


Subject(s)
Body Temperature/physiology , Hibernation/physiology , Models, Animal , Respiratory Rate/physiology , Animals , Cost-Benefit Analysis , Environment, Controlled , Mice , Monitoring, Physiologic/economics , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Reproducibility of Results
10.
Anal Chem ; 90(8): 5209-5216, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29554802

ABSTRACT

Hydrolytic enzymes are a topic of continual study and improvement due to their industrial impact and biological implications; however, the ability to measure the activity of these enzymes, especially in high-throughput assays, is limited to an established, few enzymes and often involves the measurement of secondary byproducts or the design of a complex degradation probe. Herein, a versatile single-walled carbon nanotube (SWNT)-based biosensor that is straightforward to produce and measure is described. The hydrolytic enzyme substrate is rendered as an amphiphilic polymer, which is then used to solubilize the hydrophobic nanotubes. When the target enzyme degrades the wrapping, the SWNT fluorescent signal is quenched due to increased solvent accessibility and aggregation, allowing quantitative measurement of hydrolytic enzyme activity. Using (6,5) chiral SWNT suspended with polypeptides and polysaccharides, turnover frequencies are estimated for cellulase, pectinase, and bacterial protease. Responses are recorded for concentrations as low as 5 fM using a well-characterized protease, Proteinase K. An established trypsin-based plate reader assay is used to compare this nanotube probe assay with standard techniques. Furthermore, the effect of freeze-thaw cycles and elevated temperature on enzyme activity is measured, suggesting freezing to have minimal impact even after 10 cycles and heating to be detrimental above 60 °C. Finally, rapid optimization of enzyme operating conditions is demonstrated by generating a response surface of cellulase activity with respect to temperature and pH to determine optimal conditions within 2 h of serial scans.


Subject(s)
Cellulase/metabolism , Nanotubes, Carbon/chemistry , Peptide Hydrolases/metabolism , Polygalacturonase/metabolism , Biosensing Techniques/instrumentation , Cellulase/analysis , Hydrogen-Ion Concentration , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Optical Imaging/instrumentation , Peptide Hydrolases/analysis , Polygalacturonase/analysis , Substrate Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...