Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 150: 106319, 2024 02.
Article in English | MEDLINE | ID: mdl-38142569

ABSTRACT

Cancer affects the mechanical properties of tissue. Therefore, elastography techniques can be used to differentiate cancerous from healthy tissue. Due to probe size and restricted handling, most elastography techniques are not applicable in minimally invasive surgery (MIS). Established techniques such as endoscopic ultrasound elastography measure under undefined boundary conditions, making the determination of quantitative mechanical properties challenging. Water flow elastography (WaFE) has recently been introduced for application in MIS. Here, we present an improved WaFE measurement method in which the probe attaches itself to the sample with a small suction pressure. This leads to defined boundary conditions, allowing for a quantitative determination of the Young's modulus of tissue. To facilitate fast measurements, we developed a correction model for the hydrodynamic resistance and the fluid inertia of the tubing. We used WaFE for ex vivo measurements on human bladders and found a significantly larger Young's modulus for cancerous vs. healthy tissue. We determined the optimal classification threshold for the Young's modulus to be 8 kPa and found that WaFE can differentiate between cancerous and healthy tissue with a sensitivity of 0.96 and a specificity of 1. Our results underline that WaFE can be a helpful differentiating tool in MIS.


Subject(s)
Elasticity Imaging Techniques , Urinary Bladder Neoplasms , Humans , Elasticity Imaging Techniques/methods , Urinary Bladder Neoplasms/diagnostic imaging , Elastic Modulus , Phantoms, Imaging , Water
2.
J Mech Behav Biomed Mater ; 145: 106004, 2023 09.
Article in English | MEDLINE | ID: mdl-37418969

ABSTRACT

Mechanical properties are important markers for pathological processes in tissue. Elastography techniques are therefore becoming more and more useful for diagnostics. In minimally invasive surgery (MIS), however, the probe size is limited and the handling is restricted, thereby excluding the application of most established elastography techniques. In this paper we introduce water flow elastography (WaFE) as a new technique that benefits from a small and inexpensive probe. This probe flows pressurized water against the sample surface to locally indent it. The volume of the indentation is measured with a flow meter. We use finite element simulations to find the relation between the indentation volume, the water pressure, and the Young's modulus of the sample. We used WaFE to measure the Young's modulus of silicone samples and porcine organs, finding agreement within 10% to measurements with a commercial material testing machine. Our results show that WaFE is a promising technique for providing local elastography in MIS.


Subject(s)
Elasticity Imaging Techniques , Animals , Swine , Elasticity Imaging Techniques/methods , Finite Element Analysis , Elastic Modulus , Silicones , Minimally Invasive Surgical Procedures
SELECTION OF CITATIONS
SEARCH DETAIL