Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 539(7627): 69-71, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27808190

ABSTRACT

Unlike the electroweak sector of the standard model of particle physics, quantum chromodynamics (QCD) is surprisingly symmetric under time reversal. As there is no obvious reason for QCD being so symmetric, this phenomenon poses a theoretical problem, often referred to as the strong CP problem. The most attractive solution for this requires the existence of a new particle, the axion-a promising dark-matter candidate. Here we determine the axion mass using lattice QCD, assuming that these particles are the dominant component of dark matter. The key quantities of the calculation are the equation of state of the Universe and the temperature dependence of the topological susceptibility of QCD, a quantity that is notoriously difficult to calculate, especially in the most relevant high-temperature region (up to several gigaelectronvolts). But by splitting the vacuum into different sectors and re-defining the fermionic determinants, its controlled calculation becomes feasible. Thus, our twofold prediction helps most cosmological calculations to describe the evolution of the early Universe by using the equation of state, and may be decisive for guiding experiments looking for dark-matter axions. In the next couple of years, it should be possible to confirm or rule out post-inflation axions experimentally, depending on whether the axion mass is found to be as predicted here. Alternatively, in a pre-inflation scenario, our calculation determines the universal axionic angle that corresponds to the initial condition of our Universe.

2.
Phys Rev Lett ; 113(22): 221101, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25494064

ABSTRACT

We report the first direct measurement of the overall characteristics of microwave radio emission from extensive air showers. Using a trigger provided by the KASCADE-Grande air shower array, the signals of the microwave antennas of the Cosmic-Ray Observation via Microwave Emission experiment have been read out and searched for signatures of radio emission by high-energy air showers in the GHz frequency range. Microwave signals have been detected for more than 30 showers with energies above 3×10^{16} eV. The observations presented in this Letter are consistent with a mainly forward-directed and polarized emission process in the GHz frequency range. The measurements show that microwave radiation offers a new means of studying air showers at E≥10^{17} eV.

3.
Phys Rev Lett ; 107(17): 171104, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-22107501

ABSTRACT

We report the observation of a steepening in the cosmic ray energy spectrum of heavy primary particles at about 8×10(16) eV. This structure is also seen in the all-particle energy spectrum, but is less significant. Whereas the "knee" of the cosmic ray spectrum at 3-5×10(15) eV was assigned to light primary masses by the KASCADE experiment, the new structure found by the KASCADE-Grande experiment is caused by heavy primaries. The result is obtained by independent measurements of the charged particle and muon components of the secondary particles of extensive air showers in the primary energy range of 10(16) to 10(18) eV. The data are analyzed on a single-event basis taking into account also the correlation of the two observables.

4.
Nature ; 435(7040): 313-6, 2005 May 19.
Article in English | MEDLINE | ID: mdl-15902250

ABSTRACT

The nature of ultrahigh-energy cosmic rays (UHECRs) at energies >10(20) eV remains a mystery. They are likely to be of extragalactic origin, but should be absorbed within approximately 50 Mpc through interactions with the cosmic microwave background. As there are no sufficiently powerful accelerators within this distance from the Galaxy, explanations for UHECRs range from unusual astrophysical sources to exotic string physics. Also unclear is whether UHECRs consist of protons, heavy nuclei, neutrinos or gamma-rays. To resolve these questions, larger detectors with higher duty cycles and which combine multiple detection techniques are needed. Radio emission from UHECRs, on the other hand, is unaffected by attenuation, has a high duty cycle, gives calorimetric measurements and provides high directional accuracy. Here we report the detection of radio flashes from cosmic-ray air showers using low-cost digital radio receivers. We show that the radiation can be understood in terms of the geosynchrotron effect. Our results show that it should be possible to determine the nature and composition of UHECRs with combined radio and particle detectors, and to detect the ultrahigh-energy neutrinos expected from flavour mixing.

SELECTION OF CITATIONS
SEARCH DETAIL
...