Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 460
Filter
1.
Cancer Cell Int ; 24(1): 222, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937761

ABSTRACT

Triple negative breast cancer (TNBC) is a type of cancer that lacks receptor expression and has complex molecular mechanisms. Recent evidence shows that the ubiquitin-protease system is closely related to TNBC. In this study, we obtain a key ubiquitination regulatory substrate-ABI2 protein by bioinformatics methods, which is also closely related to the survival and prognosis of TNBC. Further, through a series of experiments, we demonstrated that ABI2 expressed at a low level in TNBC tumors, and it has the ability to control cell cycle and inhibit TNBC cell migration, invasion and proliferation. Molecular mechanism studies proved E3 ligase CBLC could increase the ubiquitination degradation of ABI2 protein. Meanwhile, RNA-seq and IP experiments indicated that ABI2, acting as a crucial factor of tumor suppression, can significantly inhibit PI3K/Akt signaling pathway via the interaction with Rho GTPase RAC1. Finally, based on TNBC drug target ABI2, we screened and found that FDA-approved drug Colistimethate sodium(CS) has significant potential in suppressing the proliferation of TNBC cells and inducing cell apoptosis, making it a promising candidate for impeding the progression of TNBC.

2.
Int J Biol Macromol ; 273(Pt 1): 132877, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38848847

ABSTRACT

In this study, 16S rDNA high-throughput sequencing, Fourier transform infrared spectroscopy, and two-dimensional correlation spectroscopy techniques were used to analyze the mechanisms driving the sequence of degradation of gummy substances by the microbial community and hydrolytic enzymes during the flax dew degumming process. The results revealed that the inoculation of combined bacteria induced quorum sensing, modulated hydrolytic enzyme production, and reshaped the community structure. Lignin-degraded genera (Pseudomonas and Sphingobacterium) were enriched, and the relative abundances of pectin- and cellulose-degraded genera (Chryseobacterium) decreased in the early degumming stages. Hemicellulose-degraded genera (Brevundimonas) increased over the degumming time. Moreover, the abundance of lignin hydrolytic enzymes improved in the early stages, while the abundance of pectin hydrolytic enzymes increased at the end of degumming. Various types of functional bacteria taxa changed the sequence of substance degradation. Electron scanning microscopy and differential scanning calorimetry results indicated that the degumming, facilitated by the inoculation of combined bacteria, was nearly completed by 21 d. The fibers exhibited smoother and more intact properties, along with higher thermal stability, as indicated by a melting temperature of 71.54 °C. This study provides a reference for selecting precise degumming bacterial agents to enhance degumming efficiency.


Subject(s)
Bacteria , Flax , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Flax/microbiology , Lignin/metabolism , Lignin/chemistry , Hydrolysis , Spectroscopy, Fourier Transform Infrared , Phylogeny , RNA, Ribosomal, 16S/genetics , Pectins/metabolism , Cellulose/metabolism
3.
Front Chem ; 12: 1406051, 2024.
Article in English | MEDLINE | ID: mdl-38860236

ABSTRACT

This study introduces newly discovered chrysin derivatives that show potential as candidate molecules for treating inflammatory bowel disease (IBD). Compound 4b, among the synthesized compounds, displayed significant inhibitory effects on monocyte adhesion to colon epithelium induced by TNF-α, with an IC50 value of 4.71 µM. Further mechanistic studies demonstrated that 4b inhibits the production of reactive oxygen species (ROS) and downregulates the expression of ICAM-1 and MCP-1, key molecules involved in monocyte-epithelial adhesion, as well as the transcriptional activity of NF-κB. In vivo experiments have shown that compound 4b exhibits a dose-dependent inhibition of 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats, thereby validating its effectiveness as a colitis inhibitor in animal models. These results indicate that 4b shows considerable promise as a therapeutic agent for managing IBD.

4.
Pol J Microbiol ; 73(2): 253-262, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38905280

ABSTRACT

To establish a rapid detection method for norovirus GII.2 genotype, this study employed reverse transcription recombinase polymerase amplification (RT-RPA) combined with CRISPR/Cas12a and lateral flow strip (RT-RPA-Cas12a-LFS). Here, the genome of norovirus GII.2 genotype was compared to identify highly conserved sequences, facilitating the design of RT-RPA primers and crRNA specific to the conserved regions of norovirus GII.2. Subsequently, the reaction parameters of RT-RPA were optimized and evaluated using agar-gel electrophoresis and LFS. The results indicate that the conserved sequences of norovirus GII.2 were successfully amplified through RT-RPA at 37°C for 25 minutes. Additionally, CRISPR/Cas12a-mediated cleavage detection was achieved through LFS at 37°C within 10 minutes using the amplification products as templates. Including the isothermal amplification reaction time, the total time is 35 minutes. The established RT-RPA-Cas12a-LFS method demonstrated specific detection of norovirus GII.2, yielding negative results for other viral genomes, and exhibited an excellent detection limit of 10 copies/µl. The RT-RPA-Cas12a-LFS method was further compared with qRT-PCR by analyzing 60 food-contaminated samples. The positive conformity rate was 100%, the negative conformity rate was 95.45%, and the overall conformity rate reached 98.33%. This detection method for norovirus GII.2 genotype is cost-effective, highly sensitive, specific, and easy to operate, offering a promising technical solution for field-based detection of the norovirus GII.2 genotype.


Subject(s)
Genotype , Norovirus , Norovirus/genetics , Norovirus/isolation & purification , Nucleic Acid Amplification Techniques/methods , CRISPR-Cas Systems , Humans , RNA, Viral/genetics , Caliciviridae Infections/virology , Caliciviridae Infections/diagnosis , Sensitivity and Specificity
5.
Fitoterapia ; 177: 106048, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838825

ABSTRACT

Four new phenols and one new aminobenzoic acid derivative, with five known phenols were isolated from the roots of Rhus chinensis Mill. Their structures were elucidated by UV, IR, HRESIMS, 1D and 2D NMR spectra, as well as optical rotations. Compound 4 significantly inhibited mouse ear inflammation (inhibitory rate of 44.03%), and significantly extended the time of pain response (extension rate of 48.55%), showing significant anti-inflammatory and analgesic effects in vivo.

6.
PLoS One ; 19(5): e0303156, 2024.
Article in English | MEDLINE | ID: mdl-38709746

ABSTRACT

BACKGROUND: Parkinson's disease (PD) patients face a substantial unmet need for disease-modifying interventions. Potential approaches such as exercise and acupuncture have been investigated to slow PD progression. To address this unmet need, we developed a novel therapeutic approach that integrates acupuncture and exercise: the Meridian Activation Remedy System for PD patients (MARS-PD). Building upon promising outcomes observed in our preliminary pilot study, where MARS-PD exhibited a large clinically important difference on the Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III (MDS-UPDRS Part III), we embark on a randomized controlled trial with the primary objective of examining the efficacy, safety, and economic impact of MARS-PD. METHODS: In this single-center, assessor and statistician-blinded, parallel-group randomized controlled trial, we aim to investigate the clinical efficacy of MARS-PD through 16 interventions administered over 8 weeks in 88 PD patients. Participants will be randomly assigned to the experimental (n = 44) or control (n = 44) groups. The experimental group will receive MARS-PD intervention alongside standard care, while the control group will solely receive standard care. The intervention period spans 8 weeks, followed by a 12-week post-intervention follow-up. The primary endpoint is the change in MDS-UPDRS Part III score from baseline to the conclusion of the 8-week intervention. Secondary outcomes encompass various assessments, including MDS-UPDRS, International Physical Activity Questionnaire Short Form, Parkinson Self Questionnaire, Parkinson's Disease Sleep Scale, Timed Up and Go test, GAITRite metrics, Functional Near-Infrared Spectroscopy measurements, smart band outcomes, gut microbiome analysis results, and iris connective tissue texture. DISCUSSION: Previous studies by the authors have indicated MARS-PD's safety and benefits for PD patients. Building upon this foundation, our current study aims to provide a more comprehensive and detailed confirmation of the efficacy of MARS-PD. TRIAL REGISTRATION: cris.nih.go.kr KCT0006646 -First posted on 7 October 2021; ClinicalTrials.gov NCT05621772 -First posted on 11 November 2022.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/therapy , Male , Female , Meridians , Middle Aged , Acupuncture Therapy/methods , Acupuncture Therapy/adverse effects , Aged , Treatment Outcome , Adult , Single-Blind Method , Randomized Controlled Trials as Topic , Exercise Therapy/methods
7.
Phytochemistry ; 224: 114148, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38763311

ABSTRACT

Seven previously undescribed triterpenes (1-7), as well as one triterpene (8) previously described as a synthetic product, were isolated from the antler-shaped fruiting body of Ganoderma lucidum. Their structures were established based on comprehensive spectroscopy analysis. At a concentration of 10 µM, (24E)-3-oxo-15α-acetoxy-lanosta-7,9(11),24-trien-26-al (3) and (24R,25S)-3-oxo-lanosta-7,9(11)-dien-25-ethoxyl-24,26-diol (5) provided significant protection against acetaminophen-induced necrosis in human HepG2 liver cancer cells, and the cell survival rates were 69.7 and 76.1% respectively, similar to that of the positive control (glutathione, 72.1%). Based on the present results, these compounds could be potential hepatoprotective agents.


Subject(s)
Fruiting Bodies, Fungal , Protective Agents , Reishi , Triterpenes , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/isolation & purification , Humans , Hep G2 Cells , Fruiting Bodies, Fungal/chemistry , Reishi/chemistry , Protective Agents/pharmacology , Protective Agents/chemistry , Protective Agents/isolation & purification , Molecular Structure , Cell Survival/drug effects , Acetaminophen/pharmacology , Structure-Activity Relationship , Liver/drug effects , Dose-Response Relationship, Drug
9.
Biomater Adv ; 161: 213899, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772133

ABSTRACT

Large bone defects, particularly those exceeding the critical size, present a clinical challenge due to the limited regenerative capacity of bone tissue. Traditional treatments like autografts and allografts are constrained by donor availability, immune rejection, and mechanical performance. This study aimed to develop an effective solution by designing gradient gyroid scaffolds with titania (TiO2) surface modification for the repair of large segmental bone defects. The scaffolds were engineered to balance mechanical strength with the necessary internal space to promote new bone formation and nutrient exchange. A gradient design of the scaffold was optimized through Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) simulations to enhance fluid flow and cell adhesion. In vivo studies in rabbits demonstrated that the G@TiO2 scaffold, featuring a gradient structure and TiO2 surface modification, exhibited superior healing capabilities compared to the homogeneous structure and TiO2 surface modification (H@TiO2) and gradient structure (G) scaffolds. At 12 weeks post-operation, in a bone defect representing nearly 30 % of the total length of the radius, the implantation of the G@TiO2 scaffold achieved a 27 % bone volume to tissue volume (BV/TV) ratio, demonstrating excellent osseointegration. The TiO2 surface modification provided photothermal antibacterial effects, enhancing the scaffold's biocompatibility and potential for infection prevention. These findings suggest that the gradient gyroid scaffold with TiO2 surface modification is a promising candidate for treating large segmental bone defects, offering a combination of mechanical strength, bioactivity, and infection resistance.


Subject(s)
Alloys , Surface Properties , Tissue Scaffolds , Titanium , Titanium/chemistry , Animals , Rabbits , Tissue Scaffolds/chemistry , Alloys/chemistry , Bone Regeneration/drug effects , Osseointegration/drug effects , Bone and Bones , Tissue Engineering/methods , Finite Element Analysis , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
10.
J Nutr Biochem ; 130: 109649, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38642842

ABSTRACT

Obesity and its related metabolic diseases bring great challenges to public health. In-depth understanding on the efficacy of weight-loss interventions is critical for long-term weight control. Our study demonstrated the comparable efficacy of exercise (EX), intermittent fasting (IF), or the change of daily diet from an unhealthy to a normal chow (DR) for weight reduction, but largely divergently affected metabolic status and transcriptome of subcutaneous fat, scapular brown fat, skeletal muscles and liver in high-fat-high-fructose diet (HFHF) induced obese mice. EX and IF reduced systematic inflammation, improved glucose and lipid metabolism in liver and muscle, and amino acid metabolism and thermogenesis in adipose tissues. EX exhibited broad regulatory effects on TCA cycle, carbon metabolism, thermogenesis, propanoate-, fatty acid and amino acid metabolism across multiple tissues. IF prominently affected genes involved in mitophagy and autophagy in adipose tissues and core genes involved in butanoate metabolism in liver. DR, however, failed to improve metabolic homeostasis and biological dysfunctions in obese mice. Notably, by exploring potential inter-organ communication, we identified an obesity-resistant-like gene profile that were strongly correlated with HFHF induced metabolic derangements and could predict the degree of weight regain induced by the follow-up HFHF diet. Among them, 12 genes (e.g., Gdf15, Tfrc, Cdv3, Map2k4, and Nqo1) were causally associated with human metabolic traits, i.e., BMI, body fat mass, HbA1C, fasting glucose, and cholesterol. Our findings provide critical groundwork for improved understanding of the impacts of weight-loss interventions on host metabolism. The identified genes predicting weight regain may be considered regulatory targets for improving long-term weight control.


Subject(s)
Fasting , Homeostasis , Mice, Inbred C57BL , Obesity , Transcriptome , Weight Gain , Weight Loss , Animals , Male , Obesity/metabolism , Obesity/diet therapy , Diet, High-Fat/adverse effects , Physical Conditioning, Animal , Mice , Liver/metabolism , Muscle, Skeletal/metabolism , Thermogenesis , Lipid Metabolism , Adipose Tissue/metabolism , Intermittent Fasting
11.
Zhongguo Zhong Yao Za Zhi ; 49(3): 763-769, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621880

ABSTRACT

This study aims to investigate the effect of Erchen Decoction(ECD) on liver mitochondrial function in mice with a high-fat diet and its possible mechanism. A total of sixty C57BL/6J mice were randomly divided into a normal group, high-fat group, ECD group, mTORC1 activator(MHY) group, ECD+MHY group, and polyene phosphatidyl choline(PPC) group, with 10 rats in each group. The normal group was given a normal diet, and the other groups were fed a high-fat diet for 20 weeks. At the 17th week, the ECD group and ECD+MHY group were given ECD(8.7 g·kg~(-1)) daily, and the PPC group was given PPC(0.18 g·kg~(-1)) daily, while the remaining groups were given normal saline(0.01 mL·g~(-1)) daily for four weeks. In the 19th week, the MHY group and ECD+MHY group were injected intraperitoneally with MHY(5 mg·kg~(-1)) every other day for two weeks. During the experiment, the general conditions of the mice were observed. The contents of triglyceride(TG) and total cholesterol(TC) in serum were measured. Morphological changes in liver tissue were examined through HE and oil red O staining. The content of adenosine triphosphate(ATP) was determined using chemiluminescence, and mitochondrial membrane potential was assessed using a fluorescence probe(JC-1). Western blot was performed to detect the expression of rapamycin target protein complex 1(mTOR1), ribosomal protein S6 kinase B1(S6K), sterol regulatory element binding protein 1(SREBP1), and caveolin 1(CAV1). RESULTS:: revealed that compared with the normal group, the mice in the high-fat group exhibited significant increases in body weight and abdominal circumference(P<0.01). Additionally, there were significant increases in TG and TC levels(P<0.01). HE and oil red O staining showed that the boundaries of hepatic lobules were unclear; hepatocytes were enlarged, round, and irregularly arranged, with obvious lipid droplet deposition and inflammatory cell infiltration. The liver ATP content and mitochondrial membrane potential decreased significantly(P<0.01). The expression of p-mTOR, p-S6K, and n-SREBP1 increased significantly(P<0.01), while the expression of CAV1 decreased significantly(P<0.01). Compared with the high-fat group, the body weight and TG content of mice in the ECD group and PPC group decreased significantly(P<0.05). Improvements were observed in hepatocyte morphology, lipid deposition, and inflammatory cell infiltration. Furthermore, there were significant increases in ATP content and mitochondrial membrane potential(P<0.05 or P<0.01). The expression of p-mTOR, p-S6K, and n-SREBP1 decreased significantly in the ECD group(P<0.01), while CAV1 expression increased significantly(P<0.01). However, the indices mentioned above did not show improvement in the MHY group. When the ECD+MHY group was compared with the MHY group, there were significant reductions in body weight and TG contents(P<0.05). The morphological changes of hepatocytes, lipid deposition, and inflammatory cell infiltration were recovered. Moreover, there were significant increases in liver ATP content and mitochondrial membrane potential(P<0.05 or P<0.05). The expression of p-mTOR, p-S6K, and n-SREBP1 decreased significantly(P<0.01), while CAV1 expression increased significantly(P<0.01). In conclusion, ECD can improve mitochondrial function by regulating the mTORC1/SREBP1/CAV1 pathway. This mechanism may be involved in the resolution of phlegm syndrome and the regulation of lipid metabolism.


Subject(s)
Azo Compounds , Diet, High-Fat , Non-alcoholic Fatty Liver Disease , Mice , Rats , Animals , Diet, High-Fat/adverse effects , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/pharmacology , Caveolin 1/metabolism , Caveolin 1/pharmacology , Mice, Inbred C57BL , Liver , Non-alcoholic Fatty Liver Disease/metabolism , TOR Serine-Threonine Kinases/metabolism , Triglycerides/metabolism , Body Weight , Adenosine Triphosphate/pharmacology
12.
Cell Death Dis ; 15(4): 289, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653973

ABSTRACT

GATA-binding protein 4 (GATA4) is recognized for its significant roles in embryogenesis and various cancers. Through bioinformatics and clinical data, it appears that GATA4 plays a role in breast cancer development. Yet, the specific roles and mechanisms of GATA4 in breast cancer progression remain elusive. In this study, we identify GATA4 as a tumor suppressor in the invasion and migration of breast cancer. Functionally, GATA4 significantly reduces the transcription of MMP9. On a mechanistic level, GATA4 diminishes MMP9 transcription by interacting with p65 at the NF-κB binding site on the MMP9 promoter. Additionally, GATA4 promotes the recruitment of HDAC1, amplifying the bond between p65 and HDAC1. This leads to decreased acetylation of p65, thus inhibiting p65's transcriptional activity on the MMP9 promoter. Moreover, GATA4 hampers the metastasis of breast cancer in vivo mouse model. In summary, our research unveils a novel mechanism wherein GATA4 curtails breast cancer cell metastasis by downregulating MMP9 expression, suggesting a potential therapeutic avenue for breast cancer metastasis.


Subject(s)
Breast Neoplasms , Cell Movement , GATA4 Transcription Factor , Gene Expression Regulation, Neoplastic , Histone Deacetylase 1 , Matrix Metalloproteinase 9 , Neoplasm Invasiveness , Humans , GATA4 Transcription Factor/metabolism , GATA4 Transcription Factor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Female , Cell Movement/genetics , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/genetics , Animals , Acetylation , Cell Line, Tumor , Mice , Transcription Factor RelA/metabolism , Transcription, Genetic , Promoter Regions, Genetic/genetics , Mice, Nude , Mice, Inbred BALB C
13.
Carbohydr Polym ; 332: 121945, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38431423

ABSTRACT

Tissue-engineered is an effective method for repairing critical-size bone defects. The application of bioactive scaffold provides artificial matrix and suitable microenvironment for cell recruitment and extracellular matrix deposition, which can effectively accelerate the process of tissue regeneration. Among various scaffold properties, appropriate pore structure and distribution have been proven to play a crucial role in inducing cell infiltration differentiation and in-situ tissue regeneration. In this study, a chitosan (CS) /silk fibroin (SF) /bioactive glass (BG) composite scaffold with distinctive radially oriented pore structure was constructed. The composite scaffolds had stable physical and chemical properties, a unique pore structure of radial arrangement from the center to the periphery and excellent mechanical properties. In vitro biological studies indicated that the CS/SF/BG scaffold could promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and the expression of related genes due to the wide range of connected pore structures and released active elements. Furthermore, in vivo study showed CS/SF/BG scaffold with radial pores was more conducive to the repair of skull defects in rats with accelerated healing speed during the bone tissue remodeling process. These results demonstrated the developed CS/SF/BG scaffold would be a promising therapeutic strategy for the repair of bone defects regeneration.


Subject(s)
Chitosan , Fibroins , Rats , Animals , Fibroins/chemistry , Tissue Scaffolds/chemistry , Osteogenesis , Chitosan/chemistry , Tissue Engineering/methods , Bone Regeneration
14.
Cancer Med ; 13(4): e7065, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38457206

ABSTRACT

INTRODUCTION: Near-infrared autofluorescence imaging (NIFI) can be used to identify parathyroid gland (PG) during surgery. The purpose of the study is to establish a new model, help surgeons better identify, and protect PGs. METHODS: Five hundred and twenty three NIFI images were selected. The PGs were recorded by NIFI and marked with artificial intelligence (AI) model. The recognition rate for PGs was calculated. Analyze the differences between surgeons of different years of experience and AI recognition, and evaluate the diagnostic and therapeutic efficacy of AI model. RESULTS: Our model achieved 83.5% precision and 57.8% recall in the internal validation set. The visual recognition rate of AI model was 85.2% and 82.4% on internal and external sets. The PG recognition rate of AI model is higher than that of junior surgeons (p < 0.05). CONCLUSIONS: This AI model will help surgeons identify PGs, and develop their learning ability and self-confidence.


Subject(s)
Deep Learning , Parathyroid Glands , Humans , Parathyroid Glands/diagnostic imaging , Parathyroid Glands/surgery , Parathyroidectomy/methods , Thyroidectomy/methods , Artificial Intelligence , Optical Imaging/methods , Spectroscopy, Near-Infrared/methods
15.
Phytochemistry ; 222: 114071, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552709

ABSTRACT

Eight pairs of dihydrohomoisoflavonoids (1-8), including four pairs of enantiomeric aglycones [(R,S)-portulacanones B (1) and C (2) and (R,S)-oleracones C (3) and Q (4)] and four pairs of epimeric glycosides [portulacasides A-D and epiportulacasides A-D (5-8)], were obtained from Portulaca oleracea L. Among them, (R,S)-oleracone Q (4) and four pairs of epimeric glycosides (5-8) were reported for the first time. The 50% EtOH fraction from the 70% EtOH extract prevented HepG2 human liver cancer cell damage induced by N-acetyl-p-aminophenol (APAP), and the cell survival rate was 62.3%. Portulacaside B (6a), which was isolated from the 50% EtOH fraction, exhibited hepatoprotective and anti-inflammatory effects. The compound increased the survival rate of APAP-damaged HepG2 human liver cancer cells from 40.0% to 51.2% and reduced nitric oxide production in RAW 264.7 macrophages, resulting in an inhibitory rate of 46.8%.


Subject(s)
Cell Survival , Portulaca , Humans , Portulaca/chemistry , Mice , Animals , Hep G2 Cells , RAW 264.7 Cells , Cell Survival/drug effects , Molecular Structure , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/chemistry , Nitric Oxide/biosynthesis , Nitric Oxide/antagonists & inhibitors , Glycosides/chemistry , Glycosides/pharmacology , Glycosides/isolation & purification , Acetaminophen/pharmacology , Structure-Activity Relationship , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification
16.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542476

ABSTRACT

Sugar transporters play important roles in plant growth and development, flowering and fruiting, as well as responses to adverse abiotic and biotic environmental conditions. Lilies (Lilium spp.) are some of the most representative ornamental bulbous flowers. Sugar metabolism is critical for bulb formation in lilies; therefore, clarifying the amount and expression pattern of sugar transporters is essential for further analyzing their roles in bulb formation. In this study, based on the transcriptome data of the Lilium Oriental hybrid 'Sorbonne' and Lilium × formolongi, a total of 69 and 41 sugar transporters were identified in 'Sorbonne' and Lilium × formolongi, respectively, by performing bioinformatics analysis. Through phylogenetic analysis, monosaccharide transporters (MSTs) can be divided into seven subfamilies, sucrose transporters (SUTs) can be divided into three subgroups, and sugars will eventually be exported transporters (SWEETs) can be divided into four clades. According to an analysis of conserved motifs, 20, 14, and 12 conserved motifs were predicted in MSTs, SUTs, and SWEETs, respectively. A conserved domain analysis showed that MSTs and SUTs contained a single domain, whereas most of the SWEETs harbored two MtN3/saliva domains, also known as a PQ-loop repeat. The LohINT1, which was predicted to have a smaller number of transmembrane structural domains, was cloned and analyzed for subcellular localization. It was found that the LohINT1 protein is mainly localized in the cell membrane. In addition, the expression analysis indicated that 22 LohMSTs, 1 LohSUTs, and 5 LohSWEETs were upregulated in 'Sorbonne' 1 day after scale detachment treatment, suggesting that they may regulate the initiation of the bulblet. A total of 10 LflMSTs, 1 LflSUTs, and 6 LflSWEETs were upregulated 4~6 months after sowing, which corresponds to the juvenile-to-adult transition phase of Lilium × formolongi, suggesting that they may also play a role in the accompanying bulb swelling process. Combined with quantitative real-time PCR (qRT-PCR) analysis, LohSTP8 and LohSTP12 were significantly overexpressed during the extremely early stage of bulblet initiation, and LflERD6.3 was significantly overexpressed during the growth of the underground bulblet, suggesting that they may be key sugar transporters in the formation of lily bulbs, which needs further functional verification.


Subject(s)
Lilium , Lilium/metabolism , Phylogeny , Carbohydrate Metabolism , Transcriptome , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Sugars/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
17.
Chem Commun (Camb) ; 60(27): 3705-3708, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38477139

ABSTRACT

C-N bonds play a critical role in pharmaceutical, agrochemical, and materials sciences, necessitating ever-better methods to forge this linkage. Here we report a simple procedure for direct C(sp3)-H azidation using iron or manganese catalysis and a nucleophilic azide source. All reagents are commercially available, the experimental procedure is simple, and we can use the C-H donor substrate as the limiting reagent, a challenge for many C-H azidation methods. Preliminary experiments are consistent with a hydrogen atom transfer (HAT)/radical ligand transfer (RLT) radical cascade mechanism and a wide variety of substrates can be azidated in moderate to high yields.

18.
Nat Commun ; 15(1): 1944, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431703

ABSTRACT

Forecasting large earthquakes along active faults is of critical importance for seismic hazard assessment. Statistical models of recurrence intervals based on compilations of paleoseismic data provide a forecasting tool. Here we compare five models and use Bayesian model-averaging to produce time-dependent, probabilistic forecasts of large earthquakes along 93 fault segments worldwide. This approach allows better use of the measurement errors associated with paleoseismic records and accounts for the uncertainty around model choice. Our results indicate that although the majority of fault segments (65/93) in the catalogue favour a single best model, 28 benefit from a model-averaging approach. We provide earthquake rupture probabilities for the next 50 years and forecast the occurrence times of the next rupture for all the fault segments. Our findings suggest that there is no universal model for large earthquake recurrence, and an ensemble forecasting approach is desirable when dealing with paleoseismic records with few data points and large measurement errors.

19.
Front Chem ; 12: 1339364, 2024.
Article in English | MEDLINE | ID: mdl-38318112

ABSTRACT

Aconitine (AC), which is the primary bioactive diterpene alkaloid derived from Aconitum L plants, have attracted considerable interest due to its unique structural feature. Additionally, AC demonstrates a range of biological activities, such as its ability to enhance cardiac function, inhibit tumor growth, reduce inflammation, and provide analgesic effects. However, the structure-activity relationships of AC are remain unclear. A clear understanding of these relationships is indeed critical in developing effective biomedical applications with AC. In line with these challenges, this paper summarized the structural characteristics of AC and relevant functional and bioactive properties and the structure-activity relationships presented in biomedical applications. The primary temporal scope of this review was established as the period spanning from 2010 to 2023. Subsequently, the objective of this review was to provide a comprehensive understanding of the specific action mechanism of AC, while also exploring potential novel applications of AC derivatives in the biomedical field, drawing upon their structural characteristics. In conclusion, this review has provided a comprehensive analysis of the challenges and prospects associated with AC in the elucidation of structure-bioactivity relationships. Furthermore, the importance of exploring modern biotechnology approaches to enhance the potential biomedical applications of AC has been emphasized.

20.
RSC Adv ; 14(3): 1952-1961, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38192314

ABSTRACT

Schiff bases have remarkable anticancer activity and are used for glioma therapy. However, the poor water solubility/dispersibility limits their therapeutic potential in biological systems. To address this issue, carbon dots (CDs) have been utilized to enhance the dispersibility in water and biological efficacy of Schiff bases. The amino groups on the surface of CDs were conjugated effectively with the aldehyde group of terephthalaldehyde to form novel CD-based Schiff bases (CDSBs). The results of the MTT assays demonstrate that CDSBs have significant anticancer activity in glioma GL261 cells and U251 cells, with IC50 values of 17.9 µg mL-1 and 14.9 µg mL-1, respectively. CDSBs have also been found to have good biocompatibility with normal glial cells. The production of reactive oxygen species (ROS) in GL261 glioma cells showed that CDSBs, at a concentration of 44 µg mL-1, resulted in approximately 13 times higher intracellular ROS production than in the control group. These experiments offer evidence that CDSBs induce mitochondrial damage, leading to a reduction in mitochondrial membrane potential in GL261 cells. In particular, in this work, CDs serve not as carriers, but as an integral part of the anticancer drugs, which can expand the role of CDs in cancer treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...