Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 8(1): 3400, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29467375

ABSTRACT

Many studies have reported that increasing atmospheric nitrogen (N) deposition broadens N:phosphorus (P) in both soils and plant leaves and potentially intensifies P limitation for plants. However, few studies have tested whether P addition alleviates N-induced P limitation for plant belowground growth. It is also less known how changed N:P in soils and leaves affect plant belowground stoichiometry, which is significant for maintaining key belowground ecological processes. We conducted a multi-level N:P supply experiment (varied P levels combined with constant N amount) for Glycyrrhiza uralensis (a N fixing species) and Pennisetum centrasiaticum (a grass) from a desert steppe in Northwest China during 2011-2013. Results showed that increasing P addition increased the belowground biomass and P concentrations of both species, resulting in the decreases in belowground carbon (C):P and N:P. These results indicate that P inputs alleviated N-induced P limitation and hence stimulated belowground growth. Belowground C:N:P stoichiometry of both species, especially P. centrasiaticum, tightly linked to soil and green leaf C:N:P stoichiometry. Thus, the decoupling of C:N:P ratios in both soils and leaves under a changing climate could directly alter plant belowground stoichiometry, which will in turn have important feedbacks to primary productivity and C sequestration.


Subject(s)
Carbon/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Plants/metabolism , Biomass , China , Desert Climate , Ecosystem , Plant Leaves/metabolism , Poaceae/metabolism , Soil
SELECTION OF CITATIONS
SEARCH DETAIL